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Alcoholic liver disease (ALD) is the most prevalent form of liver disease, encompassing a spectrum of pro-
gressive pathological changes from steatosis to steatohepatitis to fibrosis/cirrhosis and hepatocellular car-
cinoma. Alcoholic steatosis/steatohepatitis is the initial stage of ALD and a major risk factor for advanced 
liver injuries. Adiponectin is a hormone secreted from adipocytes. Fibroblast growth factor (FGF) 15 (human 
homolog, FGF19) is an ileum-derived hormone. Adipocyte-derived adiponectin and gut-derived FGF15/19 
regulate each other, share common signaling cascades, and exert similar beneficial functions. Emerging evi-
dence has revealed that dysregulated adiponectin–FGF15/19 axis and impaired hepatic adiponectin–FGF15/19 
signaling are associated with alcoholic liver damage in rodents and humans. More importantly, endocrine 
adiponectin–FGF15/19 signaling confers protection against ethanol-induced liver damage via fine tuning the 
adipose–intestine–liver crosstalk, leading to limited hepatic inflammatory responses, and ameliorated alcoholic 
liver injury. This review is focused on the recently discovered endocrine adiponectin–FGF15/19 axis that is 
emerging as an essential adipose–gut–liver coordinator involved in the development and progression of alco-
holic steatohepatitis.
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INTRODUCTION

Clinically, alcoholic liver disease (ALD) occurs in 
patients who chronically drink and/or binge excessive  
alcohol, which can lead to life-threatening complications1,2. 
Alcoholic steatosis/steatohepatitis is the initial stage of 
ALD, which can progress to hepatitis, fibrosis/cirrhosis, 
liver cancer, and liver failure1,2. The underlying cellular 
and molecular mechanisms from alcohol consumption to 
liver injury are complex and still not fully understood. 
Because of limited understanding, currently there are 
few effective clinical treatment strategies to prevent or 
reverse severe forms of ALD.

Adiponectin, one of the most abundant adipokines 
expressed and secreted from adipocytes, circulates in the 
serum either as a full-length protein or as a fragment com-
posed of the C-terminal globular domain. Adiponectin 
is also present in the serum as homomeric complexes:  
low- (LMW), middle- (MMW), and high-molecular weight  

(HMW), which is the most active form3. Two major adi-
ponectin receptors (AdipoR1 and -R2) serve as transduc-
ers of multiple adiponectin-mediated signaling pathways 
in various organs, such as the liver4 and intestine5.

Fibroblast growth factor (FGF) 15, along with its 
human homolog (FGF19), is a terminal small intestine 
(ileum)-derived hormone that regulates bile acid and lipid 
metabolism, and inflammation6. Circulating FGF15/19 
signals through binding and activating a receptor com-
plex composed of fibroblast growth factor receptor 4 
(FGFR4) and b-Klotho7. After reaching the liver through 
portal circulation, FGF15/19 binds and stimulates hepatic 
FGFR4/b-Klotho, leading to the inhibition of cholesterol 
7a-hydroxylase 1 (CYP7A1), the rate-limiting step for 
bile acid synthesis8. In addition to serving as a negative 
regulator of bile acid synthesis, the binding of FGF15/19 
to FGFR4/b-Klotho also activates multiple signaling cas-
cades, such as mitogen-activated protein kinase9,10 and 
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peroxisome proliferator-activated receptor g coactivator 
1-a11.

Growing evidence suggests that adiponectin and 
FGF15/19 regulate each other, modulate common signal-
ing cascades, and share similar functions. This unique 
endocrine adiponectin–FGF15/19 axis is a pivotal regu-
lator of the inflammation process, bile acid homeostasis, 
and lipid metabolism in liver5,12,13.

Emerging evidence demonstrates that ethanol com-
promises the endocrine adiponectin–FGF15/19 axis and 
its signaling. The concurrent elevation of circulating adi-
ponectin and FGF15/19 protects against the development 
of experimental alcoholic steatohepatitis in rodents. This 
review summarizes the current knowledge of the con-
certed protective actions of adiponectin and FGF15/19 
as adipose–gut–liver coordinators in the development of 
alcoholic steatohepatitis, and integrates recent research 
findings of ethanol-mediated dysregulation of the endo-
crine adiponectin–FGF15/19 axis.

ENDOCRINE ADIPONECTIN–FGF15/19 AXIS

Several lines of evidence demonstrate an association 
and crosstalk between the adipocyte-derived adiponectin 
and gut-derived FGF15/19 in mice. Injection of an adeno-
associated virus-expressing FGF15 markedly increased 
adipose adiponectin synthesis in mice5. When mice were 
treated with recombinant FGF19, adipose adiponectin  
mRNA levels were significantly increased, while hepatic 
mRNA of CYP7A1, an indicator of FGF15/19 signaling, 
was decreased12. Mice treated with recombinant globu-
lar adiponectin had significantly higher ileum FGF15  
mRNA levels but, unexpectedly, increased levels of 
hepatic CYP7A1 mRNA12. These results suggested 
a po tential regulatory link between adiponectin and 
CYP7A1. Additionally, FGF15 null mice demonstrated 
significantly lower adipose adiponectin mRNA levels 
and higher hepatic Cyp7a1 mRNA levels12. In FGFR4 
knockout mice, FGF15/19 was concurrently elevated with  
adiponectin, leading to increased insulin sensitivity, 
improved glucose metabolism, and body weight reduc-
tion while on a high-fat diet5. These results demonstrated 
that adiponectin and FGF15/19 reciprocally regulate 
each other in mice and that the adiponectin–FGF15/19 
axis participates in various signaling cascades, including 
inflammation and lipid metabolism pathways. Nonethe-
less, exactly how adiponectin and FGF15/19 regulate 
each other and the underlying mechanisms of their  
concerted actions in the liver are presently unknown.

ETHANOL DYSREGULATES  
ADIPONECTIN–FGF15/19 AXIS

Ethanol dysregulates adiponectin production, reduces 
hepatic adiponectin receptors, and disrupts adiponectin 

signaling. Several rodent models of alcoholic steatosis/ 
steatohepatitis have displayed significant decreases in 
adipose adiponectin synthesis and production, and con-
centrations of serum adiponectin, which correlate closely 
with liver dysfunction14,15. On the contrary, some studies 
have demonstrated that ethanol consumption increases 
serum adiponectin levels in rodents and humans16–18. Nev-
ertheless, existing evidence unequivocally demonstrates 
that ethanol-mediated disruption of hepatic adiponec-
tin signaling leads to the development and progres-
sion of inflammation and liver injury in mice, rats, and 
pigs14,19,20. Genetic ablation of adiponectin in mice exac-
erbated onset and progression of steatosis and liver injury 
in response to ethanol challenge. Restoring adiponectin 
levels using recombinant adiponectin ameliorated the 
ethanol-induced steatohepatitis in mice with adiponectin 
deficiency21. Furthermore, elevation of adiponectin or 
stimulation of hepatic adiponectin signaling in ethanol-
administrated animals by dietary (e.g., saturated fatty 
acids22, resveratrol23, and S-adenosylmethionine19) and 
pharmacological manipulation (e.g., rosiglitazone14) alle-
viated liver damage.

Although limited data exist on the effect of ethanol 
on ileum FGF15/19, ileum FGF15 was downregulated 
by chronic-binge or chronic ethanol feeding in mice12,13. 
Accordingly, the serum level of FGF15 was reduced in 
these mice after ethanol administration12,13. The lower 
expression of ileum FGF15 in the ethanol-fed mice could 
potentially be mediated via an increased absorption of 
bile acids into the portal circulation24. As discussed above, 
signaling of FGF15/19 requires FGFR4/b-Klotho in the 
liver25,26. FGFR4 gene and protein expression levels were 
significantly reduced in livers of the ethanol-fed mice12. 
More importantly, in comparison with healthy human  
livers, alcoholic fatty liver disease samples had signifi-
cantly lower b-Klotho mRNA abundances, indicating 
clinical relevance of hepatic FGF15/19 signaling in the 
pathogenesis of ALD27.

We recently identified a compelling link between  
adiponectin and FGF15/19 synthesis in their regulations 
by ethanol. Chronic-binge or chronic ethanol feeding with 
mice decreased serum adiponectin levels and decreased 
gene expression levels of ileum FGF1512,13. More impor-
tantly, ethanol administration concurrently increased lev-
els of adiponectin and FGF15 in two knockout (global 
mitoNEET or myeloid cell-specific lipin-1) mice12,13. 
Nevertheless, it remains unknown whether ethanol’s inhib-
itory effects on adipose adiponectin and on ileum FGF15 
synthesis in mice are sequential or parallel, and if sequen-
tial, the order of cause and effect. The interplay between 
adipose adiponectin and ileum FGF15/19 and how the 
adiponectin–FGF15/19 axis is regulated by ethanol war-
rant future investigation.
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ADIPONECTIN–FGF15/19 SIGNALING 
AMELIORATES ETHANOL-INDUCED 

HEPATIC INFLAMMATION AND ALLEVIATES 
ALCOHOLIC LIVER INJURY

Emerging evidence suggests that endocrine adiponectin– 
FGF15/19 signaling confers protection against ethanol-
induced inflammation and liver injury via fine tuning the 
adipose–intestine–liver crosstalk5,12,13. Concomitantly, ele-
vation of circulating adiponectin and FGF15 protects two 
knockout (global mitoNEET and myeloid cell-specific 
lipin-1) mice from inflammation and liver damage after 
ethanol administration12,13.

MitoNEET [also named CDGSH iron sulfur domain 
1 (CISD1)], an iron–sulfur (2Fe-2S) cluster-containing  
outer mitochondrial membrane protein28,29, is widely ex-
pressed in various organs such as the liver30, adipose31, 
and intestine13. MitoNEET plays a vital role in regulat-
ing iron homeostasis due to its 2Fe-2S cluster29,32. Thia-
zolidinediones (TZDs), such as pioglitazone, are capable 
of binding and stabilizing the mitoNEET protein against 
2Fe-2S cluster release and thus protecting tissue from 
mitochondrial injury32. Functionally, mitoNEET is an  
important regulator of diverse biological processes, in-
cluding mitochondrial function, iron metabolism, reactive 
oxygen species (ROS) homeostasis29, lipid metabolism30,  
and inflammation13.

Utilizing a global mitoNEET knockout mouse model, 
we uncovered an intriguing role of adiponectin–FGF15 
signaling in the development of alcoholic steatohepati-
tis in mice. Chronic ethanol administration to mitoNEET 
knockout mice concurrently increased serum total 
and HMW adiponectin and ileum FGF15 synthesis in 
response to ethanol challenge. In concordance with an 
elevation of adiponectin and FGF15, mitoNEET knock-
out mice fed with ethanol were completely resistant to 
ethanol-induced steatohepatitis as revealed by dramati-
cally reduced hepatic triglycerides, decreased hepatic 
cholesterol levels, and attenuated serum alanine amin-
otransferase levels13.

Lipin-1 is a phosphatidate phosphohydrolase required 
for the generation of diacylglycerol during glycerolipid 
synthesis and exhibits dual functions in the regulation of 
lipid metabolism and inflammation process33. Lipin-1 has 
been implicated in the pathogenesis of alcoholic steatohep-
atitis34. Genetic removal of lipin-1 in myeloid cells ame-
liorated liver injury that would normally occur following 
the chronic-binge ethanol feeding protocol. Interestingly, 
the circulating levels of adiponectin and FGF15 were 
concomitantly elevated in myeloid cell-specific lipin-1 
knockout mice after ethanol administration12.

Taken together, these results have demonstrated that 
mitoNEET or myeloid cell-specific lipin-1 deficiency 

alleviates experimental alcoholic steatohepatitis in mice 
by stimulating the adiponectin–FGF15 axis12,13.

Inflammation, such as neutrophilic inflammation, 
contributes to ethanol-induced hepatic dysfunction and 
injury35. Chronic or chronic-binge ethanol administra-
tion provoked inflammatory responses as revealed by 
increased myeloperoxidase staining, F4/80+ staining, and 
elevated gene expression of inflammatory markers and 
generation of proinflammatory cytokines in livers of wild-
type control mice. However, ethanol administration to the 
mitoNEET or myeloid cell-specific lipin-1 knockout mice 
drastically diminished hepatic inflammation by suppress-
ing those inflammation markers. These findings suggest 
that the adiponectin–FGF15/19 axis participates in con-
trolling ethanol-induced inflammation in mouse liver12,13.

MECHANISMS UNDERLYING THE 
PROTECTIVE ACTION OF ENDOCRINE 
ADIPONECTIN–FGF15/19 AXIS AGAINST 

ALCOHOLIC LIVER INJURY

While the consequences of abrogating endocrine  
adiponecitn–FGF15/19 signaling during ethanol expo-
sure are still incompletely understood, growing evidence 
suggests that adiponectin–FGF15/19 signaling exerts its 
protective actions against alcoholic liver injury through 
coordinating several crucial signaling cascades (Fig. 1).

Adiponectin–FGF15/19–Lipocalin-2 Signaling 
and Ethanol

Lipocalin-2 (LCN2) (also termed neutrophil gelatinase- 
associated lipocalin) is an important innate immune 
protein of the lipocalin family36. Although initially dis-
covered in neutrophils and used as a marker of kidney 
disease, LCN2 is also expressed in the liver37. LCN2 pro-
tein is abundantly present in the circulation. One of the 
LCN2 receptors, LCN2R (24p3R in mouse or NGALR2/
SLC22A17 in humans), can transduce LCN2-mediated 
signaling. For instance, 24p3R-expressing mammalian  
cells are sensitive to LCN2-mediated signals, such as 
apoptosis, through modulating iron metabolism38. In addi-
tion to critically involving innate immune responses, 
LCN2 is an important regulator of iron metabolism. 
Unlike other members of the lipocalin family, LCN2  
protects against infections with certain Gram-negative 
bacteria by sequestrating iron from bacteria36.

LCN2 has recently been identified as a detrimental 
player in driving inflammation and promoting the devel-
opment and progression of alcoholic steatohepatitis in 
rodents and humans12,27,34,39–41. In cultured AML-12 hepa-
tocytes, ethanol exposure significantly increased LCN2 
gene expression. The activation of nuclear factor-kB 
(NF-kB), nuclear factor of activated T-cells c4, and 
miR-127–sirtuin 1 (SIRT1) axis may be responsible for 



106 YOU ET AL.

this elevation. In a cellular model of alcoholic steatosis, 
knocking down LCN2 completely prevented the fat accu-
mulation induced by ethanol27.

Hepatic and circulating LCN2 levels were markedly 
elevated in response to chronic or chronic-binge ethanol 
administration in mice and rats27,39. The drastically ele-
vated LCN2 levels were closely linked with the develop-
ment and progression of alcohol-induced fatty liver injury 
in those animals. Consistently, LCN2 knockout mice were 
resistant to fat accumulation and liver injury after alcohol 
intake27. In line with these findings, liver samples from 
patients with alcoholic fatty liver had abnormal gene 
expression of LCN2-regulated molecules.27 Furthermore, 
in patients with alcoholic steatohepatitis, LCN2 promotes 
liver inflammation after alcohol intake by mediating neu-
trophil infiltration into the liver and prolonging neutro-
phil life span40.

FGF15/19 downregulates LCN2 in cultured hepato-
cytes12. In mouse AML-12 hepatocytes, treatment with 
recombinant FGF19 inhibited mRNA expressions of 
LCN2 dose dependently. While LCN2 mRNA levels 
were significantly increased by ethanol or lipopolysac-
charide (LPS), a putative agent of ALD, coincubation 
with recombinant FGF19 completely abolished the abil-
ity of LPS or ethanol to induce LCN2 gene expression 
in AML-12 cells12. Similarly, coadministration of 

recombinant adiponectin abolished the ability of etha-
nol to upregulate LCN2 in AML-2 hepatocytes (M.Y., 
unpublished data).

In concordance with concerted elevation of adiponec-
tin and FGF15 levels, myeloid cell-specific lipin-1 defi-
ciency reduced hepatic and circulating levels of LCN2 
and protected mice from liver damage after ethanol chal-
lenge, suggesting that adiponectin–FGF15/19 signaling 
regulated the ethanol-induced inflammation and alco-
holic liver injury via targeting LCN212.

It is important to note the contradictory relationship 
between adiponecitn-FGF15/19 signaling and LCN2 
in the development of alcoholic steatohepatitis. While 
concurrently elevated levels of adiponectin and FGF15 
ameliorated ethanol-induced liver injury in mitoNEET 
knockout mice, the levels of hepatic and serum LCN2 in 
these mice were paradoxically elevated13. LCN2 has also 
been suggested to serve as a protective role in the patho-
genesis of liver diseases by acting as a “help me” signal42. 
MitoNEET deficiency-mediated elevation of LCN2 may 
trigger anti-inflammatory signaling and protect mice from 
ethanol-induced liver damage13. Furthermore, given that 
both mitoNEET and LCN2 play vital roles in regulating 
iron homeostasis, the adiponectin–FGF15/19–LCN2 sig-
naling in mitoNEET knockout mice after ethanol intake 
may be mainly regulated via iron metabolism-dependent 

Figure 1. Proposed mechanisms that underlie the protective action of endocrine adiponectin–FGF15/19 signaling against ethanol-
induced inflammation and liver injury. Adiponectin–FGF15/19 signaling exerts its protective actions against alcoholic liver injury 
through coordinating several crucial signaling molecules and cascades including LCN2, SAA1, bile acid metabolism, iron homeo-
stasis, mitochondrial function, and SIRT1–NF-kB axis. AdipoR, adiponectin receptor; FGFR4, fibroblast growth factor receptor 4; 
LCN2, lipocalin-2; Fe, iron; Fe2+, ferrous; Fe3+, ferric; NF-kB, nuclear factor-kB; SAA1, serum amyloid A1; SIRT1, sirtuin 1.
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mechanisms13. Studies are required to further dissect the 
mechanism underlying this intriguing phenotype.

Adiponectin–FGF15/19–Serum Amyloid A1 
Signaling and Ethanol

Serum amyloid A1 (SAA1) is an inducible acute 
response protein, which is largely produced by liver in 
response to injury, infection, stress, trauma, and inflam-
mation36. SAA1 can potentially transduce signals by bind-
ing to several receptors, including the N-formyl peptide 
receptor 143, toll-like receptor 244, toll-like receptor 445, 
type B scavenger receptor I46, and receptor for advanced 
glycation end product47. During the acute phase of inflam-
matory response, the liver secretes a large amount of 
SAA1, markedly elevating the level of circulating SAA136. 
Although the liver is the principal source of SAA1, other 
organs have been documented to express SAA1. For 
example, during the nonacute phase, adipose tissue is 
the main source of SAA1 in obese subjects48. SAA1 can 
activate NF-kB and mitogen-activated protein kinases 
pathways. In addition, SAA1 elicits multiple proinflam-
matory effects, including induction of immune cell migra-
tion and stimulation of cytokine/chemokine production36. 
Elevation of SAA1 expression can therefore promote  
inflammatory conditions.

Similar to LCN2, SAA1 plays a key role in the patho-
genesis of alcoholic steatohepatitis. Liver and serum 
SAA1 levels were drastically elevated in response to 
ethanol administration in mice or rats. Importantly, the 
increased SAA1 in those animals was closely linked with 
the development of ethanol-induced steatosis, inflamma-
tion, and liver injury12,27,34,39,41.

Ethanol or LPS significantly elevated SAA1 gene 
expression in cultured AML-12 hepatocytes. However, 
the ability of LPS to induce SAA1 gene expression was 
largely blunted by FGF19 treatment12. Consistently, stim-
ulated adiponectin–FGF15 axis was associated with mark-
edly reduced hepatic expression and circulating levels of 
SAA1 in myeloid cell-specific lipin-1 knockout mice in 
response to ethanol challenge12.

It is worthwhile to note that LCN2 deficiency selec-
tively attenuated gene expression of hepatic SAA1 in 
ethanol-administrated mice, suggesting that LCN2 and 
SAA1 may regulate each other27. The intriguing interplay 
among the disrupted adiponectin–FGF15/19 signaling 
and aberrant LCN2–SAA1 axis and their contributions  
to alcoholic steatohepatitis merit future investigation.

Adiponectin–FGF15/19 Signaling Normalizes Bile 
Acid Homeostasis

Bile acids modulate inflammatory responses in vari-
ous organs including the liver and intestine. Bile acids are 
increasingly being recognized as the most sensitive markers  
of inflammation and liver dysfunction. Abnormal bile 

acid homeostasis contributes to the development and 
progression of experimental alcoholic steatohepatitis in  
rodents49,50. Clinically, alcohol consumption induces cho-
lestasis in all stages of ALD in patients51.

As discussed above, FGF15/19 is firmly established 
as a negative regulator of bile acid synthesis via CYP7A1 
inhibition in the liver8. Growing evidence has revealed 
a potential role of adiponectin in regulating bile acid 
metabolism. Serum adiponectin levels are inversely cor-
related with hepatic bile acid synthesis, serum bile acid 
levels, and hepatocellular injury in patients with nonalco-
holic liver disease52. Adiponectin also directly regulates 
bile acid homeostasis-related genes such as Cyp7a152. 
Furthermore, adiponectin is capable of alleviating inflam-
mation induced by toxic bile acids, such as deoxycholic 
acid, in esophageal adenocarcinoma cells53.

Concurrently elevated circulating levels of adiponec-
tin and FGF15 ameliorated ethanol-mediated pertur-
bation of bile acid homeostasis in the mitoNEET or 
myeloid cell-specific lipin-1 knockout mice12,13. The 
normalized hepatic and serum bile acids in these mice 
might also limit hepatic accumulation of toxic bile acids 
and ameliorated ethanol-induced liver damage. Given 
that both FGF15/19 and adiponectin can regulate bile 
acid homeostasis, this may partly explain the protective 
role of adiponectin–FGF15/19 signaling against ethanol- 
induced liver injury in those genetically modified mice12,13. 
The definitive role of adiponectin–FGF15/19 signaling in 
regulating bile acid homeostasis and its relationship to 
ALD need further investigation, potentially by perform-
ing ethanol feeding studies utilizing a genetically modi-
fied mouse model such as FGF15 or adiponectin null 
mice.

Adiponectin–FGF15/19 Signaling Ameliorates  
Ethanol-Induced Abnormality of Iron Homeostasis

Iron homeostasis is a major determinant of adiponec-
tin levels54,55. The production of adiponectin from adipose 
tissue is modulated by iron55. In patients with diabetes 
and normal individuals, serum ferritin and transferrin lev-
els are inversely associated with adiponectin54. In an ani-
mal model, iron accumulation in adipocytes, caused by 
either high iron diet feeding or ferroportin deficiency, can 
reduce adiponectin expression55. Mechanistically, iron 
signals through the reduction of acetylated forkhead box  
protein O1 levels to reduce the transcription of adiponectin 
in adipocytes55. To date, it is still uncertain whether iron 
directly regulates ileum FGF15/19 synthesis. However, 
given that adiponectin and FGF15/19 regulate each other, 
iron-mediated reduction of adiponectin can certainly 
reduce ileum FGF15/19 synthesis.

Ethanol and iron interact synergistically to cause liver 
injury56, and aberrant iron homeostasis is implicated in the  
pathogenesis of ALD57. However, there is little knowledge 
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about the effects of ethanol on iron homeostasis in tis-
sues, such as adipose and intestine, and their relationship 
with aberrant expression of adiponectin and FGF15/19. 
As discussed above, mitoNEET serves as an iron–sulfur 
cluster transfer protein due to its unique 39-amino acid 
CDGSH domain that binds to 2Fe-2S clusters. These 
2Fe-2S clusters play crucial roles in mitochondrial iron 
homeostasis30. We recently found that ethanol feeding 
substantially increased concentrations of iron (Fe), ferrous 
(Fe2+, reduced form), and ferric (Fe3+, oxidized form) in 
adipose tissues of mice13. Interestingly, the circulating lev-
els of total and HMW adiponectin and ileum FGF15 were 
decreased in these ethanol-fed mice13. We speculate that 
ethanol exposure may provoke release of the mitoNEET’s 
2Fe-2S cluster, which in turn causes mitochondrial iron 
overload and leads to concurrent reductions of adipose 
adiponectin and ileum FGF15/19 synthesis and produc-
tion in mice.

Genetic ablation of mitoNEET in mice partially, but 
significantly, abolished the ability of ethanol to induce 
ferric contents in adipose and liver and protected mice 
from ethanol-induced liver damage via concerted eleva-
tions of adiponectin and FGF1513. These findings suggest 
that adiponectin–FGF15/19 signaling might exert pro-
phylactic benefits against alcoholic liver injury via modu-
lating iron metabolism. Additional studies are needed to 
address the role of adiponectin–FGF15/19 signaling in 
regulating iron homeostasis and its involvement in the 
pathogenesis of alcoholic steatohepatitis.

Adiponectin–FGF15/19 Signaling Improves 
Mitochondrial Function

Adequate mitochondrial function and biogenesis are 
critical determinants for the folding and secretion of adi-
ponectin in adipocytes58,59. Interruption of mitochondrial 
function inhibits the expression of adiponectin in adipo-
cytes, whereas the induction of mitochondrial biogenesis 
restores the production of adiponectin58,59.

MitoNEET is an outer mitochondrial membrane 
protein and is involved in the regulation of adiponectin 
release and production through modifying mitochondrial 
activity in adipocytes28,30,31. By reducing mitochondrial 
activity, overexpression of adipose mitoNEET increases 
the production of adiponectin in adipocytes and ele-
vates circulating total and HMW adiponectin30. CISD2  
[nutrient-deprivation autophagy factor-1 (NAF-1)] is  
another member of the Fe-S protein NEET family29. 
CISD2 is closely related to mitoNEET, sharing 44%  
overall sequence identity and a highly similar structure 
and function60. Like mitoNEET, CISD2 primarily local-
izes in the outer mitochondrial membrane, regulates mito-
chondria functions61, and promotes adipose adiponectin 
production and release62. The ability of mitoNEET or 
CISD2 to exert a constitutive stimulatory effect on 

adiponectin production is mediated by compromising  
mitochondrial activity in adipose tissues30,62.

At this time, there is limited knowledge of the effects 
of ethanol on mitochondrial functions in adipose and 
intestine and on their relationship with the adiponectin– 
FGF15/19 axis. Ethanol administration to wild-type con-
trol mice markedly increased gene expression of uncou-
pling protein 1 (UCP1), a mitochondrial protein13. Accord-
ingly, adipose mitochondrial DNA (mtDNA) copy number 
was significantly elevated, and production of adiponectin 
and FGF15 was disrupted in ethanol-fed wild-type mice13. 
However, ethanol administration to mitoNEET knockout 
mice decreased the adipose UCP1 expression, reduced 
mtDNA copy number, and increased adiponectin and 
ileum FGF15 synthesis13. Interestingly, adipose CISD2 
gene expression levels were increased in these mitoNEET 
null mice fed with ethanol, suggesting that adipose CISD2 
induction might act as a compensatory molecule in  
stimulating the adiponectin–FGF15/19 axis13. Perform-
ing ethanol feeding studies using genetically modified 
mouse models such as mitoNEET/CISD2 double knock-
out mice will provide more definitive mechanisms. Given 
that adiponectin and FGF15 were concurrently elevated 
in mitoNEET knockout mice after ethanol administra-
tion, mitochondrial activity might play a pivotal role 
in regulating synthesis and production of adipose adi-
ponectin and ileum FGF15/19 in response to ethanol 
challenge.

Both adiponectin and FGF15/19 can improve mito-
chondrial health. Adiponectin increases mitochondria 
content by increasing their biogenesis63,64. Adiponectin is 
also able to rescue the damaged structure and compro-
mised membrane potential65–67. The expression of oxidized 
phosphorylation genes encoded by mitochondria DNA is 
also restored by adiponectin68. In addition, adiponectin is 
critical to maintain healthy mitochondria in hepatocytes. 
For instance, adiponectin-deficient mice have reduced 
mitochondria, spontaneous mitochondrial damage, and a 
swelling phenotype in hepatocytes69. Clinically, elevated 
serum FGF19 improved mitochondrial health and overall 
diabetic remission in obese diabetic women undergoing 
bariatric surgery70.

Unlike in adipose and intestine, it is well documented  
that alcohol intake alters hepatic mitochondria in mul-
tiple ways, causing liver dysfunction in rodents and 
humans71,72. Given the beneficial functions of adiponectin 
and FGF15/19 on mitochondria and liver, adiponectin–
FGF15/19 signal ing may protect the liver from ethanol- 
induced injury through rescuing mitochondria. In  
addition, mitochondria are the major source of ROS 
in non phagocytic cells like hepatocytes73. MitoNEET 
deficiency attenuated the generation of hepatic oxida-
tive stress in ethanol-administrated mice13. The role of 
adiponecitn–FGF15/19 signaling in mediating effects 
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of ethanol on hepatic mitochondrial functions warrants 
future investigation.

Adiponectin–FGF15/19 Signaling and  
Ethanol-Mediated Disruption of SIRT1–NF-κB Axis

NF-kB is a major master transcription factor regulat-
ing proinflammatory cytokines74. SIRT1 is an important 
molecule controlling the pathways of inflammation and 
lipid metabolism in organs such as the liver75,76 SIRT1 
exerts anti-inflammatory effects by deacetylation of the 
lysine residues on NF-kB75–78. Adiponectin directly upreg-
ulates SIRT1 in cultured hepatic cells14. More impor-
tantly, both adiponectin and FGF15/19 are able to exert 
anti-inflammatory effects via inhibiting NF-kB12,13,41. The 
SIRT1–NF-kB axis may be one of the critical signaling 
cascades in mediating adiponectin–FGF15/19 signaling.

It is well established that the aberrant SIRT1–NF-kB 
axis by ethanol exposure is, in whole or in part, respon-
sible for ethanol-induced inflammation and development 
of alcoholic steatohepatitis in animals and humans41,75,76. 
Concomitantly elevated adiponectin and FGF15 were 
associated with elevated hepatic SIRT1 protein levels, 
reduced acetylated NF-kB, deactivated NF-kB, and atten-
uated inflammation in mitoNEET or myeloid cell-specific 
knockout mice after chronic or chronic-binge ethanol 
administration12,13. Conceivably, stimulated adiponectin– 
FGF15/19 signaling in these mice would attenuate ethanol- 
induced inflammation via ameliorating hepatic SIRT1–
NF-kB signaling.

SUMMARY AND CONCLUSION

The adiponecitn–FGF15/19 axis has recently been gain-
ing recognition as an interorgan crosstalking endocrine 
coordinator from adipose and gut to liver in response to 
ethanol challenge in animal models of alcoholic steatohep-
atitis. Ethanol exposure concomitantly decreases circulat-
ing levels of adiponectin and FGF15 and disrupts hepatic 
adiponectin–FGF15 signaling in rodents. More impor-
tantly, stimulation of adiponectin–FGF15/19 signaling 
profoundly improves alcoholic liver injury by blocking the 
signals leading to hepatopathogenesis, including inhibit-
ing expression of the LCN2–SAA1 axis, normalizing bile 
acid homeostasis, preventing iron overload, ameliorating 
mitochondrial dysfunction, decreasing ROS generation, 
restoring SIRT1 activity, diminishing NF-kB activity, and 
limiting inflammatory response (Fig. 1).

The large body of evidence has suggested that ALD 
is driven by organ crosstalk79. Endocrine adiponectin–
FGF15/19 axis controls adipose and gut to liver commu-
nication arm of an adipose–intestine–liver partnership in 
response to alcohol challenges. However, other organs 
such as muscle, bone, spleen, and brain may be within 
this communication axis regulated by the adiponectin–
FGF15/19 axis and ethanol. Further studies will be 

necessary to clarify the effects of ethanol or its relation-
ship with those crucial additional organs on the dynam-
ics and impacts of the adiponectin–FGF15/19 axis-driven 
signaling cascades, which ultimately influence liver 
functions.

The detailed mechanisms whereby adiponectin–FGF 
15/19 signaling exerts protective effects against ethanol- 
induced inflammation and alcoholic liver injury are 
incompletely understood. As discussed above, the LCN2– 
SAA1 axis is likely the critical component in mediat-
ing adiponectin–FGF15/19 signaling. It is necessary to  
further clarify the intriguing interplay between disrupted 
adiponectin–FGF15/19 signaling and the aberrant LCN2–
SAA1 axis, and their contributions to ethanol-induced 
inflammation and liver injury. Performing ethanol feeding 
studies with various genetically modified animal models,  
including tissue-specific adiponectin, FGF15, LCN2, or  
SAA1 conditional knockout mice or transgenic mice will 
provide a clearer and better mechanistic picture of the inter-
play of these signaling molecules regulated by ethanol.

Additional aberrant processes, such as circadian rhy-
thms80, autophagy81, and ER stress82, are associated with 
pathogenesis of ALD. Both adiponectin and FGF15/19 
are involved in regulating circadian rhythms83,84, auto-
phagy85,86, and ER stress87,88. Therefore, it is worthwhile 
to explore whether and how adiponectin–FGF15/19 sig-
naling ameliorates these disturbed processes and subse-
quently attenuates inflammatory responses and alleviates 
liver injury in response to ethanol challenge.

Growing evidence has revealed that disruption of gut  
microbiota homeostasis is closely associated with patho-
genesis in rodents and humans89. For example, admin-
istration of ethanol to germ-free mice was associated 
with the absence of liver inflammation and injury, indi-
cating that the presence of abnormal microbiota is nec-
essary for the development and progression of ALD90. 
Furthermore, modulation of gut microbiota dysbiosis 
could attenuate ethanol-mediated hepatic injury in mice 
and humans90–92. It will be important to investigate the 
interplay between gut microbiota and ileum FGF15/19 
synthesis and how the coordination of gut microbiota and 
ileum FGF15/19 is disrupted by ethanol. More impor-
tantly, it is necessary to investigate whether and how 
endocrine adiponectin–FGF15/19 signaling improves  
liver functions by remodeling gut microbiota during etha-
nol exposure.

The detailed mechanisms by which ethanol dysregu-
lates the adiponectin–FGF15/19 axis will require fur-
ther elucidation. As discussed above, regulation of 
iron metabolism represents an important mechanism 
for mitoNEET, CISD2, and LCN2, and their actions. 
Therefore, particular attention should be given to these 
newly emerged molecules. It is worthwhile to explore 
whether these molecules act as regulators affected by 
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ethanol in its dysregulation of the adiponectin–FGF15/19 
axis via disrupted iron homeostasis. It will also be impor-
tant to investigate whether reducing iron accumula-
tion in tissues such as adipose, intestine, and liver is a 
plausible approach to alleviate alcoholic liver injury by 
boosting the protective adiponectin–FGF15/19 signal-
ing. In addition, it is important to determine how ethanol 
impairs hepatic receptors for adiponectin and FGF15/19,  
particularly FGFR4/b-Klotho.

Gender differences are well known in ALD. It is well 
established in both human alcoholics and animal models  
of ethanol feeding that females develop more extensive 
liver injury than males93. Although it is unknown whether 
there are gender-specific changes in the expression of 
ileum FGF15/19, sexual dimorphism and sex-specific dif-
ferences have been associated with adiponectin expression 
and its signaling94. Therefore, it is of great importance for 
future research projects focusing on gender differences 
in the regulation of adiponectin–FGF15/19 axis and their 
roles in susceptibility to ALD. In addition, adiponectin–
FGF15/19 signaling may also play an important role in 
the progression of ALD from fibrosis–cirrhosis toward 
hepatocellular carcinoma. Changes in this signaling inter-
action may alter the progression of ALD and thus provide 
potential targets for therapeutic intervention.

The clinical relevance of adiponectin–FGF15/19 signal-
ing in the pathogenesis of alcoholic steatohepatitis will need 
to be further evaluated. It will also require determining the 
correlation between the impaired adiponectin–FGF15/19 
axis and the severity of liver injury (mild to moderate and 
severe liver injury in response to alcohol abuse). Prolonged 
exposure to FGF19 leads to the formation of hepatocellu-
lar carcinomas in rodents. This may limit clinical applica-
tions of FGF19. Therefore, it is important to explore the 
possibility of using nontumorigenic FGF19 variants of 
FGF19. Nonetheless, endocrine adiponectin–FGF15/19 
signaling has profound beneficial effects in normalizing 
ethanol-induced deranged inflammatory processes through 
targeting the liver. Therefore, the adiponecitn–FGF15/19 
axis represents an excellent pathway for the treatment of 
human alcoholic steatohepatitis. Enhancing or optimizing 
the adiponectin–FGF15/19 signaling may serve as a potent 
strategy in the management and treatment of human ALD.
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