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Iron regulatory proteins 1 and 2 (IRP1 and IRP2) are RNA binding proteins that posttranscriptionally regulate 
the expression of mRNAs coding for proteins involved in the maintenance of iron and energy homeostasis. The 
RNA binding activities of the IRPs are regulated by changes in cellular iron. Thus, the IRPs are considered iron 
sensors and the principle regulators of cellular iron homeostasis. The mechanisms governing iron regulation of 
the IRPs are well described. Recently, however, much attention has focused on the regulation of IRPs by reactive 
nitrogen and oxygen species (RNS, ROS). Here we focus on summarizing the iron-regulated RNA binding 
activities of the IRPs, as well as the recent findings of IRP regulation by RNS and ROS. The recent observations 
that changes in oxygen tension regulate both IRP1 and IRP2 RNA binding activities will be addressed in light 
of ROS regulation of the IRPs.

Iron regulatory proteins Reactive nitrogen species Reactive oxygen species

MAMMALIAN IRON HOMEOSTASIS

Iron is required by cells for survival and growth. 
This metal plays a role in a variety of biological pro
cesses and serves as a cofactor for many enzymes. 
Iron is also required for the synthesis of heme and, 
therefore, for the activity of all hemoproteins. Free 
iron is toxic due to its ability to catalyze the genera
tion of free radicals that oxidize proteins and DNA 
and initiate peroxidation of lipid membranes. In hu
mans, the accumulation of excess cellular iron can 
result in cirrhosis, arthritis, cardiomyopathy, diabetes 
mellitus, and increased risk of cancer and heart dis
ease.

Cells balance their need for iron with the toxicity 
of iron by regulating both iron uptake and storage. 
Cells accumulate iron by transferrin (Tf)-dependent 
and Tf-independent mechanisms (2,3,17,79). The Tf- 
dependent process involves the binding of transferrin- 
Fe3+ to the transferrin receptor (TfR), which is then 
endocytosed into cells where iron is released. Tf-in
dependent mechanisms involve the uptake of iron by 
the proton-coupled metal transporter, DMT1/ 
Nramp2/DCT1 (38), and by the iron transporter, SF1 
(40). Iron taken up by cells enters a labile pool con

sisting of low molecular weight iron complexes (52). 
Although the exact nature of this pool is unknown, it 
appears that iron is chelated to ligands such as citrate, 
ascorbate, amino acids, and nucleotides. This pool is 
usually small due to iron’s ability to catalyze free 
radical formation. Increases in the iron pool result in 
the induction of ferritin, which stores iron in a form 
unavailable to catalyze free radical formation, and in 
the destabilization of the TfR mRNA, resulting in de
creased iron uptake. The coordinate regulation of fer
ritin and TfR by iron provides a mechanism by which 
cells balance their requirement for iron with the tox
icity of iron.

REGULATION OF IRON HOMEOSTASIS BY 
IRON REGULATORY PROTEINS

Iron homeostasis is regulated by the iron regula
tory proteins (IRPs) 1 and 2. IRPs are cytosolic RNA 
binding proteins that posttranscriptionally regulate 
the expression of proteins involved in iron uptake, 
storage, and utilization (47,57,80,81). IRPs bind with 
high affinity to RNA stem-loops, known as iron-
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responsive elements (IREs). Structural studies have 
shown that IREs consist of a conserved six-mem- 
bered loop and an unconserved base paired stem con
taining either a bulge-C or an internal loop/bulge 
UGC/C (1,34,88). IREs are located in the 5'-untrans- 
lated (UTR) regions of mRNAs encoding the iron 
storage protein, ferritin; the heme biosynthetic en
zyme, erythroid-aminolevulinate synthase; and the 
Krebs cycle enzymes, mitochondrial (m)-aconitase 
and Drospophila succinate dehydrogenase. The bind
ing of IRPs to the 5' IREs inhibits translation of these 
mRNAs by preventing 43S ribosome binding (65). 
Five IREs are located in the 3' UTR of the TfR 
mRNA, where IRP binding stabilizes this mRNA and 
protects it from endonuclease attack (6). One IRE is 
located in the 3' UTR of the cation transporter 
mRNA, DMT1 (38).

Mammalian IRP1 shares —30% identity with the 
[4Fe-4S] containing enzyme, m-aconitase. Aconitase 
is a Krebs cycle enzyme that interconverts citrate and 
isocitrate via the intermediate ds-aconitate, and its 
activity depends on the presence of a [4Fe-4S] clus
ter. Aconitase contains four domains surrounding an 
active-site cleft where substrate is bound (4,36). 
Three iron atoms within the cluster are liganded to 
three cysteines within this cleft, whereas the fourth 
iron, Fea, is solvent exposed and has a free coordina
tion site that binds substrate. The 18 active-site resi
dues in m-aconitase, including the three cysteines 
that serve as ligands for the [4Fe-4S] cluster, are con
served in IRP1. IRP1 exhibits aconitase activity and 
is identical to a previously described c-aconitase (46).

IRP1 RNA binding activity is regulated by cellular 
iron levels. Iron posttranslationally converts the apo- 
RNA binding form into the active [4Fe-4S] c-aconi
tase form without changes in IRP1 protein or mRNA 
levels (Fig. 1). RNA binding and c-aconitase activi
ties are mutually exclusive. RNA binding activity of 
IRP1 is enhanced by phosphorylation (84). The pro
cess of cluster assembly for the aconitases is not un
derstood; however, a genetic screen in yeast revealed 
three proteins that are involved in assembly and mat
uration of mitochondrial Fe-S-containing proteins 
(90). The [4Fe-4S] cluster can be disassembled by 
nitric oxide (NO#) and ROS in vivo and in vitro (Fig. 
1). Although the function of c-aconitase is unknown, 
the conservation of this activity suggests that it has a 
functional role in iron and/or energy homeostasis. 
IRP2 shares —60% identity with IRP1; however, un
like IRP1, IRP2 does not have detectable aconitase 
activity and does not appear to contain a [4Fe-4S] 
cluster. In addition, IRP2 is regulated by iron-induced 
proteolysis by the proteasome (39,51). Degradation is 
mediated by an iron-dependent oxidation mechanism 
that requires a unique 73-amino acid degradation do-

Fe, hypoxia

FIG. 1. Model for the regulation of IRP1 by iron, ROS, and RNS. 
IRP1 interconverts between a RNA binding form and a [4Fe-4S] 
c-aconitase form. Iron or hypoxia converts the apo-RNA binding 
form into the [4Fe-4S] aconitase form. NO*, H20 2, iron chelation, 
or reoxygenation (Re02) results in the formation of the IRP1 RNA 
binding form. ONNO" results in the disassembly of the [4Fe-4S] 
cluster and oxidation of cysteines required for RNA binding. This 
results in the formation of an oxidized protein, lacking RNA bind
ing and c-aconitase activities. Addition of reductants to oxidized 
IRP1 restores RNA binding activity.

main containing three essential cysteines (39,50,51). 
Phosphorylation has also been shown to enhance 
IRP2 RNA binding activity (86).

The functional role of two IRPs in the regulation 
of iron homeostasis is not known. IRP1 and IRP2 can 
specifically bind to unique subsets of synthetic IREs 
(12,45), and appropriately regulate RNAs containing 
these IREs in vivo (64). IRP1 and IRP2 bind natu
rally occurring IREs with different affinities. For ex
ample, IRP2 binds IREs containing the UGC/C-bulge 
(ferritin IRE) with higher affinity than C-bulge IREs 
(TfR-B, aconitase, and aminolevulinate synthase 
IREs) (56). These data suggest that IRP1 and IRP2 
may bind and regulate different IRE mRNAs in vivo. 
The distinctive roles of IRP1 and IRP2 in iron ho
meostasis is further questioned by the finding of a 
cell line lacking IRP1, indicating the importance of 
IRP2 in IRE regulation (85). Identification of novel 
IRE mRNAs with specificity for IRP1 or IRP2 will 
expand our knowledge of the repertoire of the IRP 
network.

REGULATION OF IRPs BY NO*

Nitric oxide (NO*) is a reactive nitrogen species 
that is synthesized by nitric oxide synthases (NOSs)
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(67). NO* serves as a ubiquitous second messenger 
and modulates a myriad of physiological functions, 
including neuronal signaling, vascular tone, and anti
bacterial activity of macrophages. NO* could be cyto
toxic due to its ability to react with transition metals 
and sulfhydryls of proteins, leading to their inactiva
tion (89). NO* produced by activated macrophages 
can kill tumor cells and combat invading microorgan
isms (68). When activated macrophages are co-cul- 
tured with tumor cells, the production of macrophage 
NO* results in the inactivation of mitochondrial Fe- 
S-containing enzymes, leading to inhibition of respi
ration and subsequent tumor cell death (20,21).

The affinity of NO* for Fe-S clusters, and the inac
tivation of m-aconitase by NO’ led to the notion that 
NO* might also modulate IRP1 activity (18,19). 
When macrophages (22,77,97), fibroblasts (70,73), 
hepatoma cells (75), and erythroleukemia cells 
(78,97) are stimulated with cytokines to produce NO* 
or treated with NO’-generating chemicals, c-aconitase 
was inactivated and converted into its IRP1 RNA 
binding form. These data supported a model whereby 
NO* modulated IRP1/c-aconitase activity; however, 
questions arose concerning whether inactivation in 
vivo was due to a direct effect by NO* or by a NO*- 
derived species such as peroxynitrite (ONOO-). 
ONOO- is the reaction product of superoxide anion 
(0 2*~) and NO*. Two studies reported that ONOO-, 
but not NO*, inactivated aconitase (14,44). Recent 
studies by Gardner and colleagues refuted these data, 
demonstrating that the NO*-mediated inactivation of 
Escherichia coli aconitase in vivo was due to S-nitro- 
sylation of the [4Fe-4S] center, which occurred inde
pendently of ONOO- (28). These data were supported 
by an electron paramagnetic resonance study showing 
that NO* reacts directly with the [4Fe-4S] cluster of 
m-aconitase and c-aconitase, resulting in cluster dis
assembly and the formation of a dintrosyl-iron-di- 
thiol complex (58). ONOO- can inactivate c-aconi
tase in cell extracts; however, in contrast to NO*, 
ONOO- does not activate IRP1 RNA binding (8). In 
addition to disrupting the [4Fe-4S] cluster, ONOO" 
oxidizes critical cysteines required for RNA binding 
(8). The physiological role of ONOO- in IRP1 regula
tion in vivo is unclear. Whether NO* modulates IRP1 
activity by S-nitrosylation of thiol groups in IRP1 as 
suggested by Ponka and colleagues remains to be de
termined (78).

Conflicting data regarding IRP2 regulation by NO* 
have been reported. IRP2 RNA binding was activated 
in J774 macrophages (96,97), fibroblasts (73), and in 
the liver during inflammation (13), but not in rat hep
atoma cells (75). In contrast, other studies using J774 
(77) and RAW264.7 macrophages (7) stimulated with 
cytokines to produce NO*, inactivation of IRP2 RNA

binding was observed. In J774 macrophages, the ad
dition of the inducible NOS inhibitor, A^-mono- 
methyl-L-arginine monoacetate or the iron chelator, 
deferioxamine, prevented the decrease in IRP2 RNA 
binding activity, indicating roles for both NO* and 
iron in IRP2 inactivation (77). Iron can be released 
from activated macrophages co-cultured with tumor 
cells, suggesting that NO* may alter iron levels at 
least in some cell types (48). In RAW264.7 macro
phages, the decrease in IRP2 RNA binding activity 
was independent of NO*, suggesting that cytokines 
may modulate IRP2 activity by other pathways (7).

The discrepancy among these studies is unclear. 
Recent studies have shown that in addition to iron- 
mediated oxidative damage (50), IRP2 activity is sen
sitive to oxidants. For example, IRP2 RNA binding is 
inactivated by 5'5'-dithiobis(2-nitrobenzoic) (DTNB) 
(75), ONOO- (7,8), and cobalt chloride (42). In con
trast, under hypoxic conditions where ROS are ex
pected to be altered, IRP2 RNA binding is activated
(42). It is possible that cell growth conditions (den
sity, medium, and serum) vary among the studies, re
sulting in subtle differences in the relative concentra
tions of iron and/or ROS, which can modulate IRP2 
RNA binding activity. One recent study showed that 
in macrophages grown in L-arginine-depleted me
dium, inducible NOS generates both NO* and 0 2*-, 
which react to form ONOO-, revealing the impor
tance of culture conditions on ROS/RNS formation 
(99).

What effect does NO* regulation of IRP1 and 
IRP2 have on target IRE mRNAs? Activation of 
IRP1 and IRP2 RNA binding correlated with de
creased ferritin synthesis in macrophages (96,97), 
hepatoma cells (75), and fibroblasts (73), and in
creased TfR mRNA levels in erthroleukemia cells 
(70,78). In experiments where IRP2 activity de
creased, ferritin synthesis increased and TfR mRNA 
levels decreased (77). The contributions of IRP1 and 
IRP2 in the regulation of ferritin, TfR, and other IRE 
mRNAs remain to be determined.

The physiological significance of NO* regulation 
of IRPs is unclear. Cairo and colleagues proposed 
that the increase in ferritin synthesis in J774 macro
phages producing NO* is consistent with in vivo 
models of inflammation where iron is retained in re
ticuloendothelial cells (77). Regulation of IRP1 and 
IRP2 by NO* may be important in the anemia of 
chronic disease where the sequestration of iron by 
macrophages limits iron for hematopoiesis (18,77).

REACTIVE OXYGEN SPECIES

The 0 2*- anion is a ubiquitous and naturally pro
duced reactive oxygen metabolite (25). There are sev
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eral sources leading to the production of cytosolic 
0 2*‘ including the NADP(H) oxidase (41) and xan
thine oxidase systems (63). A significant amount of 
cellular 0 2*~ production is derived from the incom
plete reduction of 0 2 by the mitochondrial electron 
transport machinery (15,23,93). It has been estimated 
that approximately 1-2% of the total cellular uptake 
of 0 2 is not fully reduced during respiration (9,10). 
The potential toxicity of mitochondrial- and cyto
solic-derived 0 2*~ is countered by the superoxide dis- 
mutases (SODs) that dismutates 0 2*~ to the less reac
tive and more membrane diffusible H20 2 molecule 
(25,26). The concerted activities of the SODs and the 
H20 2 enzymatic decomposing systems, catalase and 
glutathione peroxidase, result in a steady-state level 
of ~ l< r 10 M for o r  and ~1(T8 M for H20 2 (9).

ROS levels increase during aging and pathophysi
ological conditions that can lead to significant cellu
lar oxidative damage (5). Furthermore, ROS have im
portant roles in regulating cellular gene expression. 
For instance, H20 2 has gained recognition as an im
portant signaling molecule involved in the regulation 
of MAP kinase pathways, as well as mediating tran
scriptional regulation of the NF-kB and API tran
scription factors (55,66,91). The IRPs represent a 
posttranscriptional gene regulatory system that also 
responds to ROS. Regulation of IRPs by ROS allows 
IRPs to sense signals from oxygen-derived species 
in addition to sensing iron. Although not yet fully 
elucidated, the convergence of these signals on IRPs 
presumably coordinates communication between 
iron, oxidative stress, and oxygen homeostasis. Un
derstanding the respective contributions that these 
signals have on IRP regulation in vivo is an important 
and formidable task.

REGULATION OF IRPs BY ROS

Regulation of IRPl/c-Aconitase by H20 2

IRPl/c-aconitase activities are affected by H20 2 
(8,62,69,71-73) and 0 2*~ (33,71). A central feature 
that these species share is the ability to modulate the 
aconitase [4Fe-4S] cluster. The best understood ex
ample of ROS regulation of IRPl/c-aconitase is the 
pathway initiated by extracellular H20 2. Martins et al. 
(62) and Pantopoulos et al. (71) were the first to re
port that IRP1 RNA binding activity is regulated by 
oxidative stress when they demonstrated rapid activa
tion of IRP1 RNA binding activity by H20 2. De novo 
protein synthesis is not required for activation, dem
onstrating that H20 2 operates by a posttranslational 
mechanism (71). Furthermore, the continuous pres
ence of H20 2 for IRP1 activation is not required. 
Rather, brief exposure to H20 2 is sufficient to initiate

a signaling pathway resulting in IRP1 activation 
(62,71). As would be predicted, IRP1 activation by 
H20 2 results in the repression of ferritin protein syn
thesis and the upregulation of TfR mRNA (71). The 
observation that H20 2 activates IRP1 has since been 
reproduced by other laboratories [(64); E. S. Hanson 
and E. A. Leibold, unpublished results].

The regulation of IRP1 by H20 2 is mediated by an 
unknown extracellular event that initiates a signaling 
cascade (71-73). Using cytosolic extracts, H20 2 was 
not able to activate RNA binding (62,71), indicating 
that H20 2 is not directly acting on IRP1. Recently, an 
in vitro assay has recapitulated H20 2 activation of 
IRP1 similar to that seen using intact cells. Both cy
tosolic and membrane fractions are required for H20 2 
activation of IRP1, demonstrating activation requires 
a multicomponent system (69). Because H20 2 activa
tion of IRP1 is concomitant with decreased c-aconi- 
tase activity, the proximal signal in IRP1 activation 
may involve [4Fe-4S] cluster disassembly (53,71). 
The signaling pathway and the precise mechanism for 
IRP1 activation by extracellular H20 2 have yet to be 
defined.

Regulation of Aconitase by O '

Aconitase activity is dependent on the presence of 
a cubane [4Fe-4S] cluster. Oxidative destruction of 
the [4Fe-4S] cluster leads to enzyme inactivation. 
This property is not unique to aconitases because 
other [4Fe-4S]-containing enzymes undergo oxida
tively induced inactivation as well (24). It is well es
tablished that aconitases from E. coli (24,30,31,44) 
and mammalian (32,33) sources are sensitive to inac
tivation by 0 2#”. Both m- and c-aconitase activities 
are inactivated by 0 2*“ (33,44). Superoxide-induced 
inactivation of aconitase results from the oxidation of 
the [4Fe-4S] cluster due to the loss of a labile, sol
vent-exposed iron atom (Fea) yielding a [3Fe-4S] 
cluster ([4Fe-4S]+2 => [3Fe-4S]+1). Due to the continu
ous attack of the [4Fe-4S] cluster by steady-state lev
els of 0 2*~, it has been estimated that — 15% of total 
cellular aconitase activity is inactivated at any given 
time under normal respiratory conditions (33). Inacti
vation is inversely proportional to 0 2#“ concentration
(29,30,32). Accordingly, overexpression of the mito
chondrial Mn-SOD (33) or the cytosolic CuZn-SOD 
(92) results in increased aconitase activity. Further
more, Mn-SOD+/" mice have a —30% decrease in m- 
aconitase activity, but no change in c-aconitase activ
ity (60,98). Therefore, it is predicted that pathophysi
ological situations resulting in increased 0 2#“ levels 
will be associated with an increased rate of cluster 
disintegration. Conversely, decreased 0 2#" should sta
bilize the Fe-S cluster leading to increased aconitase
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activity. The fate of 0 2#~-inactivated aconitase is not 
unidirectional, because rapid reactivation was demon
strated in a lung cell line (33) and in E. coli (30). 
Thus, reintroduction of the fourth iron into the [3Fe- 
4S] form results in a cyclic process of inactivation- 
reactivation (27,32,33).

Regulation o f  IRP1 RNA Binding Activity During 
Hypoxia

One situation that may represent 0 2*~ regulation of 
IRPl/c-aconitase is hypoxia. Hypoxia is an important 
regulator of gene expression (11). The best under
stood example of mammalian oxygen-regulated gene 
expression is that mediated by the transcription factor 
hypoxia-inducible factor-1 (HIF-1) (11,37,76,87), 
whereas relatively little information is available re
garding posttranscriptional mechanisms (16,59). Be
cause IRP1 is regulated by ROS, and because ROS 
production is ultimately dictated by 0 2 concentration, 
we speculated that IRP1 may be regulated by changes 
in 0 2 concentration. To investigate a potentially 
novel pathway for gene regulation during hypoxia, a 
study on the regulation of the IRPs by changes in 0 2 
concentration was undertaken.

We have recently reported that hypoxia (1-3% 0 2) 
posttranslationally downregulates IRP1 while upregu- 
lating IRP2 RNA binding activity in a variety of cell 
types (Fig. 2) (42,43). Iron is required for IRP1 hyp

Hypoxia (h)
N ~4 8 18~

I R P l  

I R P 2

FIG. 2. Hypoxic regulation of IRPl and IRP2 Hepa-1 cells. Mouse 
Hepa-1 c lc4  were exposed to normoxia (N) or hypoxia (1% 0 2) 
for the indicated times. Bandshift analysis was performed by incu
bating cytosolic extracts (12 pg) with a 32P-labeled iron responsive 
element RNA probe. The RNA-protein complexes were resolved 
on a 5% nondenaturing polyacrylamide gel, and the gel was ex
posed to film. IRP1-RNA and IRP2-RNA complexes are indi
cated.

oxic inactivation implicating the Fe-S cluster in 
“sensing” changes in 0 2. Decreased IRPl RNA bind
ing activity during hypoxia is accompanied by —40% 
increase in c-aconitase activity (E. S. Hanson and E. 
A. Leibold, unpublished results). Because there are 
no detectable changes in IRPl protein levels (43), 
and because inactivation is cycloheximide insensitive 
(E. S. Hanson and E. A. Leibold, unpublished data), 
it appears that the [4Fe-4S] cluster is stabilized dur
ing hypoxia. This indicates that decreased 0 2 concen
tration promotes a posttranslational conversion from 
IRPl RNA binding to its [4Fe-4S] aconitase form. 
How does the Fe-S cluster of IRPl “sense” changes 
in 0 2? At least two possibilities arise that are not mu
tually exclusive (Fig. 3). First, hypoxia may increase 
iron leaching from mitochondrial Fe-S clusters due to 
hypoxia-induced increases in mitochondrial 0 2*~ pro
duction (23,61,93). Iron liberated in this manner 
could encourage c-aconitase [4Fe-4S] cluster forma
tion at the expense of RNA binding activity. If this 
were the case, IRP2 activity would be predicted to 
decrease when in fact hypoxia increases IRP2 activity

Hypoxia 
decreased 
cytosolic 0 2 ?

Oxidative 
damage?

insensitive to Fe

FIG. 3. Model depicting oxygen regulation of IRPl. During nor
moxia IRPl interconverts between its RNA binding form and its 
[4Fe-4S] c-aconitase form. This interconversion is dependent on 
the relative levels of iron and 0 2*~. Hypoxia decreases RNA bind
ing activity (see Fig. 2) and increases c-aconitase activity. The 
model suggests that hypoxic regulation of IRPl could be due to 
increased iron and/or decreased cytosolic 0 2*“, either of which 
would lead to stabilization of the [4Fe-4S] cluster at the expense 
of RNA binding activity. Reoxygenation (R e02) activates IRPl to 
a constitutively active RNA binding form. The dysregulated form 
of IRPl (shaded) is refractory to iron downregulation. By ad
versely affecting iron levels, it is possible that this form of IRPl 
may contribute to R e02-induced oxidative damage.
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Hypoxia
CoClj
Fe-chelation

proteasomal
degradation

FIG. 4. Model for the oxygen regulation of IRP2. Normoxic degradation of IRP2 by the proteasome is dependent on the 73-amino acid 
degradation domain that contains three essential cysteines required to sense Fe2+ (hashed) (51). In this model, IRP2 stability is dependent on 
Fe + and H20 2, which are required for oxidative modification leading to ubiquitination (Ub) and proteasomal degradation (50). Hypoxia, iron 
chelation, and CoCl2 increase IRP2 protein levels by stabilization. Hypoxia may act through an unknown 0 2 sensor that lowers cytosolic 
H20 2 resulting in decreased IRP2 oxidation and degradation. CoCl2 mimics hypoxia by possibly altering the activity of an 0 2 sensor or by 
competing with iron at an iron binding site on the degradation domain.

(Fig. 2). Thus, it appears that any increase in cellular 
iron during hypoxia cannot be the only factor in the 
hypoxic regulation of IRPs. A second possibility for 
the hypoxic stabilization of c-aconitase may involve 
decreased cytosolic 0 2#~ production during hypoxia. 
A decrease in cytosolic 0 2#" would slow the rate of 
0 2’~-mediated cluster disassembly. Because aconitase 
inactivation has been used as a marker for 0 2#“
(25,30,74), this latter scenario would suggest that the 
increase in mitochondrial generated 0 2#" that accom
panies hypoxia is not accessible to the cytosol 
(23,93). This result indicates that 0 2#" is compartmen
talized, which is consistent with data demonstrating 
that Mn-SOD+/" mice display a decrease in m-aconi- 
tase but not c-aconitase (98). It should be noted, how
ever, that there are contradicting reports regarding 
cellular compartmentalization of 0 2#~ (15,33,93).

Hypoxic inactivation of IRP1 is reversible because 
upon reexposure to normoxia RNA binding ensues 
(Fig. 3) (43). Importantly, reactivated IRP1 is modi
fied to a dysregulated form since iron does not down- 
regulate its RNA binding activity. The mechanism 
for IRP1 dysregulation is not known; however, one 
possibility may involve some form of oxidative pro
tein damage that precludes [4Fe-4S] cluster forma
tion. Interestingly, the pro-oxidant condition associ
ated with aged house flies is responsible for oxidative 
damage and inactivation of m-aconitase (100). 
Whether this bears any relationship to reoxygenation- 
induced IRP1 activation is not known. Furthermore, 
it will be of interest to determine if mammalian IRP1/ 
c-aconitase is altered during aging in mammalian 
cells. A second possibility is that IRP1 may be phos- 
phorylated during reoxygenation, which could pre
clude Fe-S assembly (84). Finally, ROS produced 
during reoxygenation may disassemble the Fe-S clus
ter faster than cluster assembly. Regardless of the

mechanism, the inability of IRP1 to sense iron during 
reoxygenation is predicted to result in aberrant iron 
homeostasis, and may be an important contributor to 
reoxygenation-induced cell injury, an event known to 
be exacerbated by increased iron.

Hypoxic Activation o f  IRP2

IRP2 RNA binding activity is significantly upreg- 
ulated during hypoxia (Fig. 2). The increase in RNA 
binding activity parallels an equal increase in IRP2 
protein levels (42). Hypoxic activation of IRP2 has 
several intriguing similarities to the well-studied 
H IF-la subunit of HIF-1. HIF-1 is a heterodimeric 
transcription factor (HIF-1 a/P) composed of two he
lix-loop-helix PAS family proteins (37,76,94). HIF- 
1 activates the transcription of many genes during 
hypoxia and therefore is believed to be an important 
mediator of cellar adaptation to hypoxia. Whereas 
HIF-1 p levels do not change during hypoxia, both 
HIF-la and IRP2 are activated during hypoxia by a 
mechanism involving protein stabilization (42,49,82). 
Iron chelation and CoCl2 mimic hypoxia by increas
ing H IF-la (54,95) and IRP2 protein levels 
(39,42,83). Although CoCl2 increases IRP2 levels, 
IRP2 is unable to bind RNA in bandshift analysis 
unless first reduced with DTT. Thus, CoCl2 has the 
dual effect of inducing IRP2 accumulation while at 
the same time reversibly inactivating RNA binding. 
Whether redox regulation of IRP2 occurs in vivo un
der more physiological conditions is not known.

It has been suggested that CoCl2 and iron chelation 
mimic hypoxia by inactivation of a cytosolic hemo- 
protein that functions as an 0 2 sensor (11,35,37). 
Such an 0 2 sensor could modulate a signal during 
low 0 2 conditions that could result in IRP2 and HIF- 
l a  stabilization. However, such a cytosolic 0 2 sens
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ing protein has not yet been definitively identified. 
Mechanistic studies have demonstrated that IRP2 is 
oxidized by metal-catalyzed oxidation mechanism re
quiring Fe2+ and 0 2. In turn, oxidized IRP2 results in 
a good substrate for ubiquitination and proteasomal 
degradation (Fig. 4) (50). Based on this finding, we 
suggest a model whereby altering the rate of IRP2 
metal-catalyzed oxidation by hypoxia and CoCl2 acti
vates IRP2 by a mechanism involving protein stabili
zation (Fig. 4). CoCl2 could also compete for iron 
binding at the degradation domain, thus blocking 
IRP2 iron sensing.

It should be noted that recent data indicate that 
the mitochondria may function as an 0 2 sensor that

initiates signaling to H IF-la by increasing rather than 
decreasing H20 2 levels (15,23,93). Elucidating the 
source(s) and defining the precise signaling path
way^) for IRP2 and H IF-la hypoxic stabilization is 
an important next step in understanding hypoxic sig
naling and gene regulation.
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