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Review

Ferroptosis and Acetaminophen Hepatotoxicity: 
Are We Going Down Another Rabbit Hole?
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Acetaminophen (APAP) hepatotoxicity is the most frequent cause of acute liver failure in the US. The mecha-
nisms of APAP-induced liver injury have been under extensive investigations for decades, and many key events 
of this necrotic cell death are known today. Initially, two opposing hypotheses for cell death were proposed: 
reactive metabolite and protein adduct formation versus reactive oxygen and lipid peroxidation (LPO). In the 
end, both mechanisms were reconciled, and it is now generally accepted that the toxicity starts with formation 
of reactive metabolites that, after glutathione depletion, bind to cellular proteins, especially on mitochondria. 
This results in a mitochondrial oxidant stress, which requires amplification through a mitogen-activated pro-
tein kinase cascade, leading ultimately to enough reactive oxygen and peroxynitrite formation to trigger the 
mitochondrial membrane permeability transition and cell death. However, the earlier rejected LPO hypothesis 
seems to make a comeback recently under a different name: ferroptosis. Therefore, the objective of this review 
was to critically evaluate the available information about intracellular signaling mechanisms of APAP-induced 
cell death and those of ferroptosis. Under pathophysiologically relevant conditions, there is no evidence for 
quantitatively enough LPO to cause cell death, and thus APAP hepatotoxicity is not caused by ferroptosis. 
However, the role of mitochondria-localized minor LPO remains to be further investigated.
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INTRODUCTION

Acetaminophen (APAP), which is one of the most used 
analgesic drugs in the world, is generally safe when used 
within the therapeutic range. However, the extensive scien-
tific and clinical interest in APAP comes from the fact that 
APAP is an intrinsic hepatotoxin, which reliably can cause 
liver injury after an overdose in animals and in humans1,2. 
Because of its clinical importance as the main cause of acute 
liver failure in many Western countries3 and the develop-
ment of a mouse model4–6 that replicated many aspects 
of the human pathophysiology7, significant progress was 
made in understanding the mechanisms of cell death and 
liver injury over the years8–12. In the early days, APAP-
induced cell death was considered necrosis or oncotic 
necrosis because of cell and organelle swelling, release of 
cell contents, karyorrhexis, and karyolysis4–6. Only when 

it was recognized that there is a fundamentally different 
mode of cell death (i.e., apoptosis) did some studies claim 
that APAP-induced liver injury was caused in part by apop-
totic cell death13,14. These conclusions were easily disputed 
because the morphological characteristics of apoptosis 
(cell shrinkage, chromatic margination and condensation, 
and apoptotic bodies) were not present, there was no rel-
evant caspase activation, and highly potent caspase inhibi-
tors did not protect15,16. However, during the last decade, 
the idea of apoptotic cell death in APAP hepatotoxicity 
resurfaced mainly based on unspecific parameters such as 
the terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay and bax and bcl-2 protein expres-
sion, among others17. This led to the situation that currently 
an ever-increasing number of articles are being published 
that claim without sound scientific evidence the presence 
of APAP-induced apoptosis in APAP hepatotoxicity17,18.
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More recently, with the increased recognition of vari-
ous forms of programmed necrosis19, the hypothesis was 
brought up that ferroptosis contributes to or is even solely 
responsible for APAP-induced liver injury20–22. The objec-
tive of this review was to critically evaluate the validity 
of this new hypothesis based on our understanding of the 
pathophysiology of APAP hepatotoxicity. 

WHAT IS FERROPTOSIS?

Ferroptosis is a more recently described regulated 
necrotic cell death mode with excessive lipid peroxida-
tion (LPO) as the central mechanism23 (Fig. 1). Living in 
an oxygen-containing environment comes with formation 
of reactive oxygen species in cells leading to oxidation of 
fatty acids, especially polyunsaturated fatty acids (PUFAs) 
in phospholipids. Because this process is dependent on the 

iron-dependent Fenton reaction, this form of cell death was 
termed ferroptosis23. In addition to the many antioxidant 
enzymes, which metabolize various reactive oxygen spe-
cies, fatty acid peroxides are specifically reduced to the 
hydroxy fatty acids by the seleno-peroxidase glutathione 
peroxidase 4 (GPx4) using glutathione (GSH) as elec-
tron donor24. Thus, GPx4 and GSH are important defense 
mechanisms against the accumulation of these LPO prod-
ucts. However, inhibition of cysteine uptake or other ways 
of inhibiting GSH synthesis and inactivation of GPx4 are 
ways to trigger ferroptotic cell death24,25. Thus, ferroptotic 
cell death occurs when defense mechanisms are impaired 
and LPO is allowed to proceed uninhibited24,25. In the 
meantime, additional defense mechanisms against ferrop-
tosis, besides GPx4/GSH, were identified24,25. Because of 
the critical dependence of ferroptosis on the availability of 

Figure 1. Ferroptosis. Ferroptosis is a mode of cell death mediated by lipid peroxidation and cellular free iron when protective mecha-
nisms such as glutathione peroxidase activity have been compromised. Cellular generation of hydrogen peroxide derived from reactive 
oxygen species can react with cellular free iron through the Fenton reaction to generate the reactive hydroxyl radical. These reactive 
moieties can attack lipid membranes to induce lipid peroxidation and membrane instability, ultimately causing leakage of cellular 
material and cell death. These detrimental events are generally prevented by antioxidant enzymes such as glutathione peroxidase 4 
(GPX4) and iron chelators that prevent accumulation of free iron. Synthetic antioxidants such as ferrostatin can also prevent lipid per-
oxidation and protect against ferroptosis. This figure includes templates from Servier Medical Art, which is licensed under a Creative 
Commons Attribution 3.0 generic license (https://smart.servier.com).
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free iron (labile Fe2+ pool), high levels of the Fe(III) storage 
protein ferritin in the cell confer resistance to ferroptosis26. 
Another way to reduce iron levels in the cell is by promot-
ing the exosomal export of ferritin27. On the other hand, if 
ferritin is removed by autophagy resulting in the lysosomal 
release of free iron, the cell’s susceptibility to ferroptosis is 
increased28. Due to the fact that PUFAs are the main target 
during LPO, the levels of PUFAs in membrane phospho-
lipids are a critical measure of the susceptibility to LPO 
and ferroptosis. Feeding animals a diet high in soybean oil 
resulted in high levels of arachidonic acid (20:4) and doco-
sahexaenoic acid (22:6) in cell membranes and dramati-
cally increased the susceptibility to LPO with the primary 
loss of these PUFAs during allyl alcohol hepatotoxicity29. 
As LPO is a free radical mechanism, chain-breaking anti-
oxidants are a critical defense mechanism against excess 
LPO. Vitamin E (tocopherol) and coenzyme Q10 are potent, 
lipid-soluble antioxidants that can prevent LPO and thus 
protect against ferroptosis24,25. As a result, the dietary 
intake of vitamin E and the modulation of various steps 
of the synthesis pathway of coenzyme Q10 can impact the 
susceptibility of cells to ferroptosis25. Taken together, the 
continuous generation of oxygen free radicals in an aerobic 
environment and the availability of free iron can lead to a 
free radical chain reaction (LPO) involving mainly PUFAs 
of membrane phospholipids24. If this process is unchecked, 
the excessive LPO causes necrotic cell death, termed fer-
roptosis. However, cells have multiple layers of comple-
mentary and redundant defense mechanisms30, which 
effectively prevent this process. Thus, for a cell to die by 
ferroptosis, several events have to occur simultaneously, 
including, in general, more severe oxidant stress, potential 
mobilization of free iron, and the impairment of several of 
these aforementioned defense mechanisms.

OXIDANT STRESS AND APAP 
HEPATOTOXICITY

Formation of reactive oxygen species and other oxi-
dants during APAP hepatotoxicity was evaluated in detail 
over the years31 (Fig. 2). After the early focus on protein 
adduct formation4–6, the idea of an oxidant stress-mediated 
injury was introduced by Wendel and co-workers32. Based 
on the modulation of LPO with inhibitors and inducers of 
cytochrome P450 enzymes, it was hypothesized that leak-
age of electrons from these enzymes during APAP metab-
olism was the source of the oxidant stress33. However, the 
validity of this idea was challenged when no increased 
formation of intracellular glutathione disulfide (GSSG), a 
direct indicator of hydrogen peroxide detoxification, was 
detected during APAP metabolism in rats or mice34,35. 
Similarly, an increase in 2¢,7¢-dichlorofluorescein (DCF) 
fluorescence as indicator of an intracellular oxidant stress 
was only observed after but not during the metabolism 
phase of APAP in primary mouse hepatocytes36. The main 

location of reactive oxygen formation was shown to be in 
the mitochondria as indicated by the selective formation 
and accumulation of GSSG and the loss of protein sulf-
hydryl groups inside of the mitochondria37–39, which was 
confirmed by Mitosox fluorescence, a selective indicator 
of mitochondrial oxidant stress40. Importantly, the mito-
chondrial oxidant stress was only observed in animals 
treated with APAP but not with its nonhepatotoxic regioi-
somer 3¢-hydroxyacetanilide (AMAP), which causes pro-
tein adducts only in extra mitochondrial compartments of 
hepatocytes38,39. Together, these data provided convincing 
evidence that APAP triggers reactive oxygen formation 
in the mitochondria. More recent studies showed that the 
initial, limited oxidant stress is triggered by APAP protein 
adduct formation in the mitochondria41. This induces the 
activation of various redox-sensitive mitogen-activated 
protein kinases in the cytosol, ultimately leading to the 
phosphorylation of c-jun N-terminal kinase (P-JNK), 
which then translocates to the mitochondria42. As a con-
sequence of this mitochondrial P-JNK translocation, the 
original mitochondrial oxidant stress is amplified43, which 
triggers the opening of the mitochondrial membrane per-
meability transition pores and cell death44.

Despite the increased acceptance of an oxidant stress 
being involved in APAP-induced liver injury, the actual 
oxidant responsible for the injury remained unclear. 
However, Hinson and co-workers reported evidence for 
peroxynitrite formation (staining for nitro-tyrosine pro-
tein adducts) in the area of necrosis45. This was followed 
up by documentation that peroxynitrite (a reaction prod-
uct between superoxide and nitric oxide) occurred only 
inside the mitochondria46. Time-dependent scavenging 
experiments with GSH provided the first evidence for the 
pathophysiological relevance of peroxynitrite in APAP 
hepatotoxicity47. However, the most convincing support 
for the importance of peroxynitrite came from experi-
ments showing that partial deficiency of the mitochondrial 
MnSOD (SOD2) dramatically aggravated APAP-induced 
liver injury and nitrotyrosine staining48, and treatment 
with a mitochondria-targeted SOD mimetic, Mito-Tempo, 
can virtually eliminate peroxynitrite formation and APAP 
hepatotoxicity49,50. In addition, gene deficiency of neu-
ronal nitric oxide synthetase (nNOS) and an inhibitor 
of nNOS reduced APAP-induced liver injury and nitro-
tyrosine staining51,52. Together, these data suggest that 
the water-soluble oxidant peroxynitrite generated in the 
mitochondria is a critical oxidant in the pathophysiology 
of APAP hepatotoxicity, which causes damage to mito-
chondrial proteins such as MnSOD53 and mtDNA46 but 
does not induce relevant LPO54.

LPO AND APAP HEPATOTOXICITY

LPO is a hallmark of ferroptosis23–26. Interestingly, the 
role of LPO in APAP-induced liver injury was already 
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controversially discussed 40 years ago. Wendel and co-
workers reported a dramatic (30- to 50-fold) increase in 
ethane and pentane exhalation as specific markers of LPO, 
and severe liver injury within 2–4 h after treatment with 
APAP or allyl alcohol in mice29,32,33,55–57. LPO and liver 

injury in these models could be modulated by inducers 
and inhibitors of cytochrome P450 enzymes33 and inhib-
ited by pretreatment with vitamin E and iron chelators29,56. 
However, these effects were only observed in animals fed 
a diet deficient in vitamin E and enriched in soybean oil, 

Figure 2. Iron and acetaminophen hepatotoxicity. Acetaminophen (APAP)-mediated hepatocyte cell death is initiated by the cytochrome 
P450-mediated generation of NAPQI, which forms mitochondrial protein adducts and induces enhanced superoxide and hydrogen peroxide 
generation into the cytosol from the mitochondria. This activates the mitogen-activated protein kinase c-jun N-terminal kinase (JNK), which 
translocates onto the mitochondria and amplifies the mitochondrial oxidant stress. These changes are accompanied by lysosomal instability, 
which releases free iron into the cytosol, which is taken up by mitochondria. Increased JNK-mediated mitochondrial oxidant stress as well 
as elevated mitochondrial free iron then induce the mitochondrial permeability transition (MPT), which results in the release of mitochon-
drial proteins such as endonuclease G and apoptosis-inducing factor (AIF) into the cytosol, from where they translocate into the nucleus 
and induce nuclear DNA fragmentation. All these detrimental events ultimately result in hepatocyte necrosis. This figure includes templates 
from Servier Medical Art, which is licensed under a Creative Commons Attribution 3.0 generic license (https://smart.servier.com).
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which led to much higher levels of PUFAs, especially 
20:4 and 22:6, in the lipid membranes of the liver29. These 
PUFAs were also preferentially depleted during LPO29. 
These data clearly demonstrate the extent of LPO neces-
sary to cause liver injury and can serve as a reference. 
However, in contrast to the LPO in vitamin E-deficient 
and PUFA-sensitized animals, APAP caused only mini-
mal LPO in animals on a regular diet58. Although this 
minor LPO after APAP overdose could be reduced by 
iron chelation58 and was aggravated by cotreatment with 
Fe2+ 59, APAP-induced liver injury was not affected by the 
manipulation of LPO in these animals58,59. This suggested 
that LPO is not a relevant mechanism of injury after 
APAP in mice on a normal diet but may be more of a sec-
ondary effect of cell death. However, over the years, there 
were conflicting reports with some claiming an effect of 
LPO on APAP-induced liver injury and a partial protec-
tive effect of vitamin E60. In contrast, we did not find 
evidence of extensive LPO during APAP hepatotoxicity 
in mice on a regular diet, and a sevenfold elevation of 
membrane vitamin E levels had no effect on the injury54. 
However, in a positive control of LPO (allyl alcohol + 
Fe2+), vitamin E pretreatment reduced LPO and liver inju-
ry.54 Overall, these results are consistent with numerous 
studies with APAP overdose in the literature that showed 
a very limited (two- to threefold) increase in LPO param-
eters. Although many claim interventions that are alleged 
antioxidants reduced liver injury and LPO as evidence to 
support the conclusion that LPO causes the liver injury 
in APAP hepatotoxicity, these are generally only correla-
tions, and the lower LPO is likely a secondary effect of 
the reduced liver injury31. Furthermore, there is generally 
limited evidence that most compounds can accumulate in 
liver membranes in high enough concentrations to effec-
tively enhance the already high antioxidant capacity of 
vitamin E in vivo. However, even if liver levels of coen-
zyme Q

10
 can be increased above physiological levels, the 

hepatoprotective effect against APAP overdose was not 
caused by reduced LPO but by enhanced mitophagy61, 

which is known to limit APAP-induced cell death62.
A similar discussion occurred in the field of hepatic 

ischemia–reperfusion injury regarding the relevance of 
LPO for liver cell death63. During reperfusion after pro-
longed hepatic ischemia, there is severe injury indicated 
by plasma ALT activities of >5,000 U/L, which correlate 
with a two- to threefold increase in LPO64. In order to 
assess the fundamental question, quantitively how much 
LPO is necessary to directly cause cell injury in the liver, 
LPO was induced by continuous infusion of t-butyl 
hydroperoxide into the portal vein, and LPO was specifi-
cally measured by gas chromatographic-mass spectromet-
ric analysis of hydroxy-eicosatetraenoic acids (HETES), 
and F2-isoprostanes64. Exposure to this oxidant stress 
for 45 min triggered a two- to fourfold increase in LPO 

parameters but no liver injury; in contrast, prolonged 
exposure caused severe LPO with parameters elevated by 
12- to 30-fold triggered some liver injury64. These results 
confirmed the data of APAP-induced LPO and toxicity 
in vitamin E-deficient and PUFA-enriched livers, that is, 
for LPO to cause direct cell damage, LPO has to be quan-
titatively an order of magnitude higher than generally 
observed during the pathophysiology of APAP-induced 
liver injury. Thus, LPO is not a relevant contributor to the 
cell injury mechanism of most pathophysiologies.

IRON AND APAP HEPATOTOXICITY

LPO is generally initiated by the Fenton reaction, 
which is the reductive cleavage of hydrogen peroxide 
to form hydroxyl radicals. This reaction is catalyzed by 
the oxidation of ferrous iron (Fe2+) to ferric iron (Fe3+). 
Because of the critical role of iron in these highly dan-
gerous processes, the levels of free iron that could par-
ticipate in these reactions are kept very low in all cells 
by effective chelation in proteins like ferritin30. Under 
conditions of vitamin E deficiency, APAP- or allyl alco-
hol-dependent LPO and liver injury in vivo can be pre-
vented or aggravated by treatment with the iron chelator 
deferoxamine (DFO) or Fe2+-sulfate, respectively29,57. In 
animals on a regular diet, similar effects on the low lev-
els of LPO can be observed but without effects on the 
injury54,58,59,65,66. However, over the years, many conflict-
ing results of the effect of iron chelation with DFO were 
published in addition to the no-effect reports58,59,65, and 
studies demonstrated some delay in injury67 and protec-
tion in vivo in rats68 and in cultured rat or mouse hepato-
cytes69–71. Caveats of some of these studies are the use of 
hepatocytes cultured under hyperoxic conditions (room 
air), which leads to enhanced reactive oxygen formation 
that could mobilize iron72 and the use of rats as subopti-
mal models73. These findings indicate that any form of 
LPO in the liver depends on the availability of iron; the 
degree of iron-dependent LPO determines whether this 
has an effect on the injury.

More recently, new evidence emerged for the involve-
ment of iron in APAP hepatotoxicity (Fig. 2). It was 
recognized that APAP triggers lysosomal instability74, 
which causes the release of iron from this compartment 
and enhances the levels of cytosolic ferrous iron75. The 
iron is taken up into the mitochondria by the mitochon-
drial electrogenic Ca2+, Fe2+ uniporter (MCFU). Inside 
the mitochondria, iron is promoting the MPTP opening 
and cell death as indicated by beneficial effects of a lyso-
somal iron chelator and MCFU inhibitors76. These events 
were also confirmed in vivo77. In addition, activation of 
mitochondrial aldehyde dehydrogenase reduced hydroxy-
nonenal levels and in part attenuated the MPTP opening 
and cell death78. Together, these findings raise the pos-
sibility of a more subtle impact of iron mobilization 
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and very localized LPO inside the mitochondria on the 
pathophysiology of APAP-induced cell death. However, 
how can these mechanisms be reconciled with the promi-
nent role of mitochondrial peroxynitrite and the profound 
protection of MnSOD mimetics in APAP toxicity47–52? 

One possible explanation could be that peroxynitrite and 
the limited iron-dependent LPO need to act together to 
effectively trigger the MPTP opening. In this scenario, 
the formation of peroxynitrite inactivates mitochondrial 
proteins such as MnSOD53 as well as mitochondrial 
DNA46, and also effectively scavenges any remaining 
or newly imported GSH inside the mitochondria, thus 
rendering mitochondria highly susceptible to any addi-
tional stress (i.e., even very limited iron-dependent LPO). 
This mechanism could explain the profound protection 
of interventions that prevent peroxynitrite formation46–52, 
but also drugs that strongly promote GSH synthesis (i.e., 
N-acetylcysteine)79. More investigations are needed into 
the potential cooperation between peroxynitrite forma-
tion and a localized iron-dependent LPO specifically in 
the mitochondria to induce the MPTP80.

FERROPTOSIS AND APAP HEPATOTOXICITY

Although the first beneficial effect of ferrostatin in 
APAP-induced cell death was shown in cultured hepa-
tocytes20, the first in vivo evidence for a protection of 
ferrostatin and also vitamin E and DFO was reported 
in APAP-treated mice21. Parallel to the reduced liver 
reduction in LPO as measured by the levels of HETEs21, 
and consistent with previous data29, this also prevented 
mainly the loss of PUFAs21. On first glance, the conclu-
sion that APAP triggers ferroptosis seems to be justified. 
However, a closer look raised serious concerns regarding 
these experiments (Figs. 1 and 2).

The authors used fasted male C57BL/6J mice treated 
with 200 mg/kg APAP (intraperitoneally)21. These ani-
mals developed massive liver injury within 3 h (ALT 
activities >6,000 U/L) and significant centrilobular 
necrosis, and all animals died within 24–48 h21. However, 
this extremely rapid and severe injury was accompanied 
by only a 50% increase in MDA levels and a 100%–300% 
increase in HETEs levels21. This is an extremely unusual 
result for animals on a regular diet treated with this low 
dose of APAP. In our hands, 200 mg/kg APAP caused 
much less injury at 6 h (ALT: 800 U/L in B6129SF2/J 
mice81 and 1,500 U/L in C57BL/6J mice) (Adelusi et al., 
unpublished) with limited necrosis and 100% survival 
and recovery. Under these conditions, we did not observe 
an increase in MDA levels (Adelusi et al., unpublished). 
However, the sensitivity of Yamada’s mice was similar 
to what we observed with 400 mg/kg APAP in vitamin 
E-deficient, high-PUFA animals32,33,55, with the important 
difference that this accelerated injury correlated with a 
30- to 50-fold elevation of LPO parameters32,33,55.

Yamada and co-workers pretreated animals with the 
ferroptosis inhibitor ferrostatin and observed a close to 
100% protection; likewise, pretreatment with the iron 
chelator DFO for 7 days or a single dose of vitamin E 1 h 
before APAP also protected close to 100%21. Interestingly, 
each of these interventions prevented LPO and strongly 
reduced the depletion of hepatic GSH levels21. As has 
been established, an overdose of APAP depletes hepatic 
GSH content by 90% within 30 min82. The recovery of 
the GSH levels is dependent on the dose and requires at 
least 5–6 h for complete recovery for a dose of 200 mg/
kg82. Thus, the elevated hepatic GSH levels in the ferro-
statin, DFO, and vitamin E groups reflect most likely an 
inhibition of GSH depletion (i.e., reduced NAPQI forma-
tion, rather than improved recovery). This is supported 
by the fact that Yamada et al. reported that posttreatment 
with ferrostatin (subsequent to APAP metabolism) did 
not show any protection against hepatotoxicity21. In addi-
tion, we were not able to reproduce the complete protec-
tion with ferrostatin under the conditions described by 
Yamada et al. (Adelusi et al., unpublished), and the DFO 
and vitamin E data are inconsistent with the previous 
literature31,54,58,59,65. Together, these data contradict most 
of the published literature in terms of the time course and 
degree of the injury with a very low overdose of APAP 
and the close to 100% protection with interventions like 
ferrostatin, DFO, and vitamin E. Overall, these data make 
little sense unless these animals were highly sensitized to 
LPO, and even then, there is a clear internal contradiction 
as to the limited LPO versus the extremely aggressive 
progression of the liver injury. Thus, these inconsistencies 
need to be resolved before data of such an outlier study 
with its conclusions that contradict most of the literature 
over the last 40 years can be considered any further.

SUMMARY AND CONCLUSIONS

Cells have enormously effective, multilayered, and 
redundant defense systems against oxidant stress and 
LPO30. This includes, among others, several SODs 
and GSH peroxidases, catalase, thioredoxin, and peroxire-
doxin together with vitamin E and coenzyme Q10 in lipid 
membranes and effective iron chelation. Because of the 
multiple levels of antioxidant defense mechanisms, it is 
very difficult to acutely overcome these systems, espe-
cially in hepatocytes. Thus, it would be very challenging 
to execute the ferroptosis pathways without prior severe 
impairment of several of these defense systems. As we 
have argued many years ago, just increasing reactive oxy-
gen formation, even beyond pathophysiological relevant 
levels, is not sufficient to cause cell death83. As the early 
studies by Wendel and co-workers clearly demonstrated, 
animals with vitamin E deficiency in combination with 
elevated PUFA levels are highly sensitive to APAP or AA, 
which cause, in addition, massive depletion of GSH and 
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an oxidant stress (APAP) or NADH-dependent reduc-
tive iron mobilization (allyl alcohol)29,32,33,55–57. Hence, in 
these animals, both APAP and allyl alcohol trigger mas-
sive LPO and very acute injury. However, under normal 
circumstances, with normal membrane vitamin E levels, 
chelated iron, and without artificially increased PUFA lev-
els, it is almost impossible to trigger high enough LPO 
that would directly cause necrotic cell death. In addition, 
APAP overdose generates peroxynitrite, which is unlikely 
to have a biologically relevant effect on lipid membranes. 
Furthermore, the highly effective protection against APAP 
hepatotoxicity by SOD mimetics, despite generation 
of the Fenton reaction substrate H2O2 while preventing 
peroxynitrite formation, is another indication of the lack 
of biological relevance of LPO in APAP-induced liver 
injury. Thus, there is no credible evidence to support the 
hypothesis that under clinically relevant conditions APAP 
induces ferroptotic cell death in hepatocytes. Importantly, 
if somebody wants to put forward new evidence for such 
a mechanism, it should not just be experiments with fer-
rostatin or other ferroptosis inhibitors, vitamin E, DFO, 
etc., with some of the results opposite to previous pub-
lications21. The authors also have the obligation to make 
a serious effort to explain the differences to the previous 
literature and not just lead us down yet another rabbit hole 
as it is happening currently with apoptosis. It also needs 
to be considered that most cell death pathways have fea-
tures that are overlapping18. For example, mitochondrial 
bax translocation, cytochrome c release, and nuclear DNA 
fragmentation are detectable during APAP hepatotoxic-
ity, but the lack of caspase activation and morphological 
evidence argue against apoptosis as a relevant cell death 
mechanism17,18. Furthermore, receptor-interacting serine/
threonine-protein kinase 1 (RIPK1) and RIPK3 have been 
implicated in APAP-induced cell death84,85, but the lack 
of mixed-lineage kinase domain-like protein (MLKL) 
involvement84, which is considered the final critical medi-
ator of the necroptotic signaling pathway86, argues against 
labeling this form of cell death as necroptosis19. Likewise, 
GSH depletion and quantitively minor iron-dependent 
LPO in the presence of severe mitochondrial dysfunction 
caused by protein adducts and peroxynitrite formation, 
which triggers the irreversible DNA fragmentation10–12, 
cannot be simply labeled as ferroptosis, an LPO-dominated 
cell death23,24. Therefore, assigning cell death mechanisms 
in APAP-induced liver injury to a certain category such 
as apoptosis, necroptosis, or ferroptosis based on a few 
individual parameters or alleged specific inhibitors that 
may fit the assumed signaling mechanism does not appear 
useful or productive. In order to make real progress in our 
understanding of the mechanisms of APAP hepatotoxic-
ity and identify new therapeutic targets that have clinical 
relevance87, unbiased investigations into the cell death sig-
naling mechanisms are needed.
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