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Hepatocellular carcinoma (HCC) is the most common primary liver malignancy worldwide and a leading cause 
of death worldwide. Its incidence continues to increase in the US due to hepatitis C infection and nonalcoholic 
steatohepatitis. Liver transplantation and resection remain the best therapeutic options for cure, but these are 
limited by the shortage of available organs for transplantation, diagnosis at advanced stage, and underlying 
chronic liver disease found in most patients with HCC. Immune checkpoint inhibitors (ICIs) have been shown 
to be an evolving novel treatment option in certain advanced solid tumors and have been recently approved for 
inoperable, advanced, and metastatic HCC. Unfortunately, a large cohort of patients with HCC fail to respond 
to immunotherapy. In this review, we discuss the ICIs currently approved for HCC treatment and their various 
mechanisms of action. We will highlight current understanding of mechanism of resistance and limitations to 
ICIs. Finally, we will describe emerging biomarkers of response to ICIs and address future direction on over-
coming resistance to immune checkpoint therapy.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a primary tumor 
of the liver that most often occurs in the setting of 
chronic liver disease. Globally, HCC accounts for the 
third and seventh most common malignancy in men and 
women, respectively, and is the fourth leading cause of 
malignancy-related death1,2. In the US, the death rate 
from HCC increased by 43% between 2000 and 20163. 
The incidence of HCC remains on the rise and is esti-
mated to reach 27,000 by the end of 20204. Although hep-
atitis B virus (HBV) is the most common cause of HCC 
worldwide, the vast majority of HCC in the US is due 
to hepatitis C virus (HCV), while the incidence of HCC 

secondary to nonalcoholic fatty liver disease (NAFLD) is 
on the rise5–9. This steep increase in incidence and mor-
tality in HCC has led to investigation of better treatment 
strategies to combat this deadly disease.

Treatment of HCC is challenging due to the complex 
pathophysiology of the disease. Curative intent treatment 
options include orthotopic liver transplantation and sur-
gical resection for early stage disease10. Liver transplan-
tation is an important therapeutic option; however, there 
are limitations due to the shortage of organs for transplan-
tation. Surgical resection is another potentially curative 
treatment modality for early, localized disease. The major-
ity of patients with HCC are not eligible for resection 
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due to advanced disease at presentation and underlying 
liver dysfunction. Two landmark trials, Sorafenib HCC 
Assessment Randomized Protocol (SHARP) and Asia-
Pacific (AP), investigated the efficacy of the multikinase 
inhibitor sorafenib, which led to its approval in 2007 
as monotherapy in patients with Childs A cirrhosis and 
unresectable or metastatic HCC11–13. It is known that the 
overall survival (OS) benefit from sorafenib is much 
higher in patients with HCC related to HCV than in those 
with other underlying etiologies for HCC14. Despite its 
poor side effect profile and improvement in OS of less 
than 3 months compared to placebo, sorafenib remains 
one of the frontline systemic therapies. Lenvatinib was 
approved as an alternative first-line therapy as it was con-
firmed to be noninferior to sorafenib in the REFLECT 
study15. Multitarget tyrosine inhibitors (regorafenib and 
cabozantinib) and vascular endothelial growth factor 
(VEGF) receptor inhibitors (ramucirumab) have all been 
approved by the Food and Drug Administration (FDA) 
as single-agent second-line systemic therapy for patients 
who have failed sorafenib16–19. Despite these options, 
better and effective alternatives are needed to improve 
patient survival.

Recently, immune checkpoint inhibitors (ICIs) have 
emerged as alternatives for patients with adequate per-
formance status who progress on first-line therapy. On 
September 22, 2017, the FDA approved nivolumab as an 
adjunct treatment for patients who have failed treatment 
with sorafenib. This was followed by approval of pem-
brolizumab in November 2018. These two immunothera-
pies, which fall under the broad category of programmed 
cell death protein-1 (PD-1) inhibitors, have shown some 
promise in the treatment of advanced HCC. Drug com-
bination treatments have found some success in HCC 
as combination ipilimumab [cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) inhibitor] and nivolumab 
was recently approved by the FDA in late 2019. Results 
of the IMbrave150 trial presented at the European Society 
of Medical Oncology conference in November 2019 show 
that atezolizumab in combination with bevacizumab was 
superior in prolonged OS and progression-free survival 
(PFS) to current standard of care, sorafenib20. While 
awaiting the final publication of the IMbrave150 study 
and regulatory approval, this result is exciting as this com-
bination may soon be the frontline therapy for advanced 
HCC. Despite the success of ICIs, there remains a large 
cohort of HCC patients that do not respond to ICIs, and 
the challenge remains to find cellular and molecular cues 
that could predict which patients would benefit from 
these therapies21. In this review, we will discuss ICIs cur-
rently approved for HCC treatment and new options that 
are currently in development. We will highlight current 
understanding of mechanism of resistance and limitations 
to ICIs. Finally, we will describe emerging biomarkers of 

response to ICIs and address future directions on over-
coming resistance to immune checkpoint therapy.

ICIs: DISCOVERY AND EVOLUTION

Immune checkpoints are membrane-bound molecules 
expressed in different cells types such as natural killer 
(NK) cells, dendritic cells (DC), tumor-associated mac-
rophages, monocytes, and myeloid-derived suppressor 
cells (MDSC) including B and T cells22. These immune 
checkpoint proteins apply a physiologic break that pre-
vent activation of these cells, limiting widespread off-
target tissue damage. The intensity of immune response 
and activation of cytotoxic immune response depends on 
the balance between costimulatory signals and immune 
checkpoints23,24. It has been found that immune checkpoint 
proteins can be dysregulated by tumors as an important 
mechanism of immune resistance25. The discovery of can-
cer therapy by inhibition of this negative immune regula-
tion led to the 2018 Nobel Prize in Physiology or Medicine 
to be jointly awarded to Drs. James P. Allison and Tasuku 
Honjo26. In turn, T cells have been the major focus of 
immune checkpoint therapy because of three major rea-
sons: their capacity for selective recognition of peptides 
derived from proteins in all cellular compartments; their 
ability to directly kill antigen-expressing cells through 
cytotoxic CD8+ T cells; and, finally, their capacity to 
mount diverse immune responses through CD4+ helper 
T cells, which link adaptative and innate immunity25. The 
immune checkpoints most commonly studied in human 
cancers are CTLA-4, PD-1/programmed death-ligand-1 
(PD-L1), lymphocyte activation gene 3 (LAG-3), T-cell 
membrane protein 3 (TIM-3), and B- and T-lymphocyte 
attenuator (BTLA). These molecules and their functions 
have been well described in the literature25,27–30. In this 
review, we will focus on the two major classes (PD-1/
PD-L1 and CTLA-4) that have been studied in HCC.

ICIs IN HCC

The success of ICIs in a number of malignancies 
have opened the prospects of ICIs as a potential immu-
notherapeutic strategy for treating HCC29. The liver 
possesses a unique immune biology that allows for the 
use of checkpoint therapy. First, HCC arises in the back-
ground of chronically inflamed livers. Patients with 
chronic inflamed liver disease have been shown to over-
express PD-1 in the intrahepatic lymphocytes, while 
the ligands, PD-L1 and PD-L2, were found to be over-
expressed in Kupffer cells, liver sinusoidal endothelial 
cells, and leukocytes31,32. Additionally, the liver has an 
abundance of Kupffer cells, DC, and naive T cells that 
are prone to dysregulation in cytokine secretion, antigen 
and immune checkpoint expression in the local immune 
microenvironment29,33,34. This upregulation of checkpoint 
proteins in the liver makes ICIs a plausible option for 
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the treatment of HCC as checkpoint inhibitors have been 
developed to block these inhibitory molecules expressed 
on the surface of these cells, thereby generating antitumor 
activity.

There are two classes of ICIs that are currently being 
used clinically or are part of active investigation in 
the treatment of advanced HCC. These immunothera-
pies belong to the CTLA-4 and PD-1/PD-L1 inhibition 
pathway. Monoclonal antibodies against CTLA-4 and 
PD-1/PD-L1 have been used successfully in the treat-
ment of advanced melanoma, renal cell carcinoma, 
non-small cell lung cancer, and others including micro-
satellite instability-high (MSI-H) colorectal cancers35–40. 
Checkpoint inhibitors are indicated for use as second-line 
treatment of HCC in patients who have failed first-line 
sorafenib. There are ongoing trials looking at ICIs either 
as monotherapy or combination therapy for first-line 
treatment of advanced HCC.

Cytotoxic T-Lymphocyte-Associated Protein 4 (CTLA-4)

CTLA-4 is an intracellular protein in resting T cells. 
When the T-cell receptor is activated by CD28, CTLA-4 
is translocated to the cell surface. Once CTLA-4 is 
expressed on the surface of T cells, it binds to CD80 and 
CD86, preventing the binding of CD28 to these critical 
costimulatory molecules, mediating inhibitory signals 
to the T cell resulting in arrest of both proliferation and 
activation36,41,42. CTLA-4 signaling also promotes tumor 
development by inhibiting the binding of antigen pre-
sentation by antigen-presenting cells42. Furthermore, 
CTLA-4 signaling may also stimulate the expression of 
immune regulatory cytokine such as transforming growth 
factor-b (TGF-b)43. CTLA-4 is thought to affect Treg 
activation and differentiation as this receptor is constitu-
tively expressed in Tregs. This is further supported by the 
fact that blockade of CTLA-4 or Treg-specific knockout 
inhibits their ability to regulate both antitumor activity 
and autoimmunity44,45. 

CTLA-4 inhibitors (ipilimumab and tremelimumab) 
were introduced into clinical trials in the 2000s after pre-
clinical models showed that inhibition of this molecular 
brake with an antibody could allow for T-cell activation 
and proliferation41. Clinical activity of anti-CTLA-4 ther-
apy is more pronounced in advance metastatic melanoma 
with greater than 15% objective response rate lasting more 
than 10 years even after therapy was discontinued36,46,47. 
Tremelimumab was investigated as monotherapy for 
patients with HCC secondary to HCV-induced cirrho-
sis in a phase II clinical trial (NCT01008358)48. Partial 
response rate was observed in 17.6%, while time to pro-
gression was 6.48 months with good safety profile noted 
in the trial48. A randomized, multicenter phase III study 
(NCT04039607) looking at nivolumab in combination 
with ipilimumab compared to sorafenib or lenvatinib as 

first-line treatment is currently ongoing and is estimated 
to be completed by September 2023. Although this class 
of immunotherapy has not been approved for use as a 
single-agent therapy in HCC yet, combination of ipili-
mumab and nivolumab was granted priority review in 
November 2019 by the FDA with final approval for use 
granted on March 11, 202049. This approval was based on 
positive results from CheckMate 040 (NCT01658878), 
which showed objective response rate of 31% in the 
combination group compared to 14% in the nivolumab 
monotherapy group49,50. There are ongoing trials looking 
at combination therapy with PD-1/PD-L1 blockade. 

PD-1/PD-L1

PD-1 is an immunosuppressive receptor that is 
expressed on activated T cells, B cells, NK cells, Tregs, 
MDSC, and DC51. It was initially thought to be a receptor 
that induced cell death of activated T cell, hence the name 
programmed cell death protein52. However, it was later 
discovered that it is an immune checkpoint with its inhib-
itory function mediated by tyrosine phosphatase SHP-253. 
PD-1 has two ligands: the first is PD-L1 (also known 
as CD274 or B7-H1), which is generally expressed by 
multiple somatic cells when exposed to proinflammatory 
cytokines53. This ligand is mainly responsible for the sup-
pression of T-cell migration, proliferation, and secretion 
of cytotoxic mediators54,55. The second ligand is PD-L2 
(CD273 or B7-DC), which is infrequently expressed in 
antigen-presenting cells53. T-cell function depends on 
the level of PD-1 activity56. Cancer cells have evolved to 
hijack PD-1/PD-L1 signaling by constitutively express-
ing PD-L1 or PD-L2 to activate PD-1 in tumor-infiltrating 
lymphocytes (TILs) and evade immune surveillance57,58. 
High PD-L1 expression on tumor cells has been associ-
ated with recurrence in HCC, in addition to tumor aggres-
siveness, and poor prognosis in patients who have never 
received immunotherapy59–63. 

Nivolumab and pembrolizumab are the only two PD-1 
inhibitors currently approved for use in HCC treatment, 
although there are other PD-1 inhibitors (tislelizumab and 
camrelizumab) currently in clinical trials. Nivolumab was 
the first PD-1 inhibitor to be approved based on results of 
the CheckMate 040 trial (NCT10658878) that concluded 
on August 201664. This trial was a phase I/II, dose esca-
lation, and expansion trial of nivolumab in adults with 
histologically confirmed HCC with or without HCV or 
HBV. The authors of this study saw an objective response 
rate of 20% in the dose expansion phase and 15% in the 
dose escalation phase64. This trial was followed up by 
the CheckMate 459 trial (NCT02576509), which was 
a phase III multicenter study comparing the efficacy 
of nivolumab versus sorafenib as first-line treatment in 
patients with advanced HCC. The authors of this study 
reported that although the primary endpoint of OS was 
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not statistically significant (median OS of 16.4 months 
in nivolumab versus 14.7 months in the sorafenib group), 
nivolumab demonstrated clinical improvements in OS, 
objective response rate, and complete response rate as 
first-line treatment of advance HCC65. Pembrolizumab 
was approved by the FDA in November 2018 after the 
Keynote-224 trial, a nonrandomized phase II trial of pem-
brolizumab in patients with pathologically confirmed 
HCC who were previously treated with sorafenib and 
were either intolerant or showed signs of progression66. 
The trial reported overall objective response rate of 17%, 
stable disease in 44% of the cohort, while 33% had pro-
gressive disease66. This trial was followed by Keynote-
240, a phase III trial of pembrolizumab as second-line 
therapy versus placebo for patients previously treated with 
sorafenib67. After a median follow-up of 13.8 months, OS 
did not meet statistical significance (13.9 months in the 
pembrolizumab group compared to 10.6 months in the 
placebo group), while the objective response rate was 
17%, similar to the results from the phase II Keynote-
224 trial. Various PD-L1 inhibitors (avelumab, atezoli-
zumab, and durvalumab) are currently in clinical trials as 
of January 2020 as either monotherapy or combination 
therapy with other ICIs.

Immune-related adverse events are the side effects of 
the unbalanced immune system stemming from immu-
notherapy use, which may affect the intestine, endocrine 
glands, liver, and various tissues. Grade 3/4 treatment-
related adverse events were reported in 25% of patients 
in the CheckMate 040 trial (pemphigoid, adrenal insuf-
ficiency, and liver disorder) and 24% of patients in the 
Keynote-224 trial (hypertransaminasemia and fatigue). 
One treatment-related death was reported in the Keynote-
224 trial, which was associated with ulcerative esophagi-
tis66. Both medications are well tolerated with few side 
effects and no dose-limiting toxicities similar to patients 
with melanoma and NSCLC treated with ICIs68.

MECHANISMS OF RESISTANCE AND 
OVERCOMING RESISTANCE TO ICIs

While the mechanisms of resistance to ICIs in 
other cancers (melanoma, non-small cell lung cancer) 
are well described, there are limited data on mecha-
nism of resistance for ICIs in HCC, probably due to 
its recent approval for use in HCC treatment69–71. These 
mechanisms of resistance can be categorized into 
tumor intrinsic and extrinsic factors. Tumor intrinsic 
mechanisms arise from changes in the tumor such as 
expression of PD-L1, downregulation of major histo-
compatibility complex (MHC) class I molecules and 
changes in oncogenic signaling pathways such as acti-
vation of b-catenin signaling25,72,73. While more studies 
are needed, b-catenin activation due to mutations in 
CTNNB1 gene may be influencing the immune micro-
environment in HCC, at least in part through modula-
tion of nuclear factor kB (NF-kB) signaling pathway. 
A direct complex of b-catenin and NF-kB subunit p65 
has been shown in the liver and in HCC74. Increased 
b-catenin levels due to mutations [also observed as an 
increase in its target glutamine synthetase (GS)] was 
shown to enhance its association with NF-kB, which in 
turn decreased NF-kB activity in HCC cells. Further, 
GS-positive HCCs showed less p65 immunostaining 
and vice versa, suggesting that CTNNB1-mutated HCC 
may have decreased immune cell infiltration, at least 
in part due to reduced NF-kB activity. Extrinsic fac-
tors arise from changes in the tumor microenvironment 
(TME) such as contributions from Tregs, MDSC, upreg-
ulation of coinhibitory molecules on lymphocytes, and 
contribution from the gut microbiome75. Table 1 sum-
marizes known mechanism of resistance to ICIs. We 
assume that the mechanisms of resistance will be simi-
lar to those found in other tumors, but as more patients 
with HCC are treated with ICIs, we may uncover newer 
mechanisms of resistance.

Table 1. Summary of Known Resistance Mechanisms to Checkpoint Inhibitors

Categories of Resistance Mechanism of Resistance

Tumor intrinsic factors Downregulation of antigen processing and presentation: HLA deletion144,145, b2 microglobulin146

Downregulation of cytokines and signaling pathways: loss of JAK1/2 function69,147, deletion of interferon 
IFNGR1/2, IRF1148

b-Catenin activation (due to mutations in CTNNB1 gene)73

Tumor extrinsic factors TILs exclusion by PTEN deletion and VEGF upregulation149

Expression of alternative coinhibitory checkpoint receptors like TIM-3, LAG-3, TIGIT, VISTA, 
and BTLA69,126

Decreased TILs to Treg ratio150–152

Downregulation of dendritic cell recruitment through b-catenin signaling110

Increased immunosuppressive cells such as MDSCs, Tregs151,153,154

Epithelial-to-mesenchymal transition155

Microbiome75, 143
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BIOMARKERS FOR RESPONSE TO IMMUNE 
CHECKPOINT THERAPY STUDIED IN HCC

Based on published results of the clinical trials of 
ICIs in patients with HCC, we know that there remains 
a large proportion of patients who do not benefit from 
this class of treatment, and the challenge remains to find 
cellular and molecular cues that could help predict which 
patients would benefit from these therapies. Prognostic 
biomarkers of response to ICIs in various cancers have 
been extensively reviewed76–79. However, there are few 
studies on predictive biomarkers of response to ICI treat-
ment in HCC owing to that fact that ICI therapy is still in 
its infancy in HCC. We will summarize emerging major 
biomarkers of response to treatment and highlight their 
application in HCC. 

PD-L1 Expression

This is one of the earliest and the most commonly used 
predictive biomarker in immunotherapy. High PD-L1 
expression has been associated with improved objective 
response rate and survival in patients with melanoma, 
non-small cell lung cancer, and head and neck squamous 
cell lung cancer80–82. In fact, PD-L1 testing by immunohis-
tochemistry has been approved by the FDA as a companion 
diagnostic when considering the use of anti-PD1 therapy 
in non-small cell lung cancer83,84. PD-L1 has been previ-
ously investigated in HCC prior to initiation of immune 
checkpoint therapy. In HCC tissues, PD-L1 is found to be 
expressed by both the tumor cells and macrophages59,85. 
Previous studies have shown that PD-L1 expression is 
generally low in the tumor (roughly 10% of tumor cells), 
and there is heterogeneity in PD-L1 immunohistochemi-
cal detection in HCC84,86. A meta-analysis study by Gu et 
al. surmised that higher PD-L1 levels predict poor dif-
ferentiation, higher alpha-fetoprotein, vascular invasion, 
and poorer survival in HCC87,88. Finkelmeier et al. stud-
ied circulating levels of PD-L1 and concluded that a high 
soluble PD-L1 level may be a prognostic indicator for 
poor prognosis89. 

All this background evidence of PD-L1 as a prognostic 
biomarker was promising. However, when PD-L1 expres-
sion was evaluated in the CheckMate 040 and Keynote-
224 trials, it failed to have an impact on the objective 
response rates to anti-PD-1 therapy64,66,90. This was further 
confirmed by a study by Feun et al., where response to 
anti-PD-1 had no correlation with PD-L1 tumor staining 
in advanced HCC91. However, it is worthwhile to under-
stand why the use of PD-L1 as a biomarker failed to predict 
response to treatment in these clinical trials. One reason 
for this failure was because different assays were used 
at the different institutions for the detection of PD-L1 as 
well as varying cutoffs in assessing positive staining, thus 
making it hard to interpret the results83,84,92. In the Keynote-
224 trial, two different methods were used to investigate 

PD-L1 expression as a potential biomarker. One method 
was the combined positive score (CPS), which was cal-
culated by dividing the number of PD-L1-positive cells 
(tumor cells, lymphocytes, and macrophages) by the total 
number of viable tumor cells and multiplying by 100. The 
other method, tumor proportion score (TPS), was calcu-
lated by dividing the number of PD-L1-expressing tumor 
cells by the total number of viable tumor cells and multi-
plying by 10066. The authors of this trial found that CPS 
was associated with response to anti-PD-1, while TPS 
was not significant, suggesting that inclusion of immune 
cell scoring could improve predictive value of a PD-L1 
immunohistochemistry assay66. Additionally, we know 
that patients with PD-L1-negative tumors also respond to 
PD-1/PD-L1 blockade93. Furthermore, PD-L1 expression 
is inducible and can change during the course of HCC 
and during treatment94. It has been shown that interferon- 
g (IFN-g) induces upregulation of PD-L1 expression 
in melanoma and ovarian cancer and is a biomarker of 
response to checkpoint therapy in numerous cancers95–98. 
However, this needs to be investigated in HCC. 

Tumor Mutational Burden (TMB)

The landscape of biomarker discovery for checkpoint 
therapy is constantly evolving, and there is more recog-
nition that interactions between the microenvironment, 
genetic, and systemic factors play a role in determining 
response to these therapies. It is reasonable to assume 
that, in the near future, immunotherapy selections will be 
based on some combination of TMB, cell surface marker, 
or blood markers99,100. TMB is defined as total number of 
unique mutations in the tumor exome101. Known causes 
of TMB include microsatellite instability (MSI), or DNA 
mismatch repair gene deficiency and somatic mutations 
that arise in DNA polymerase102,103. MSI is an FDA-
approved indication for use of PD-1 checkpoint inhibi-
tor in solid tumors like colorectal cancer, given that there 
is a stronger response in MSI-high tumors compared to 
MSI-low tumors104. TMB such as changes in DNA dam-
age response genes and DNA polymerase epsilon (POLE) 
and delta (POLD) have been investigated as a biomarker 
in multiple tumor types103,105,106. Ang et al. performed a 
comprehensive genomic profiling of 755 patients with 
advanced HCC to evaluate the frequency of genomic bio-
markers. The most commonly altered genes were TERT 
(44%), TP53 (35%), CTNNB1 (31%), ARID1A (12%), 
and MYC (12%), with median TMB for the entire cohort 
being four mutations per megabase103. Only 27 (4%) 
patients had POLE or POLD alterations, and there was 
no significant correlation between TMB and responders, 
progressors, or stable disease103. High tumor burden is 
hypothesized to generate elevated neoantigen expression 
by cancer cells that are not subject to immune tolerance, 
marking them as targets for clearance by the immune 
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system103,107. The reported prevalence of MSI in HCC is 
approximately 0.80%–3% and, together with the rela-
tively lower median TMB and lack of DNA repair muta-
tions, provides an explanation for why TMB has failed to 
predict response in the majority of HCC patients108. 

Signaling Pathways

Next-generation sequencing (NGS) of HCC tumors in 
patients treated with ICIs (either anti-PD/PD-L1 mono-
therapy, anti-CTLA-4 monotherapy, or combination 
anti-PD-1 with LAG-3, KIR, or CTLA-4) has identified 
alterations in Wnt/b-catenin signaling pathway to be asso-
ciated with lower disease control rates, shorter median 
PFS, and OS109. WNT/b-catenin alterations may play a 
role in ICI response in HCC, as this signaling pathway is 
known to render tumors immunologically cold by way of 
T-lymphocyte exclusion110. Although the authors did not 
find any other pathways that correlated with responsive-
ness or resistance to ICI treatment, their work represents 
an attempt to use NGS to identify potential genetic mark-
ers that could improve current HCC treatment. Tumor 
cell biodiversity has been implicated in patient outcome 
after treatment with checkpoint inhibitors in HCC and 
intrahepatic cholangiocarcinoma111. In this study, single-
cell RNA sequencing of liver cancer specimens from 19 
patients treated with ICIs revealed a diverse landscape of 
TME. Tumors with less intratumoral diversity had a higher 
OS compared to highly diverse tumors111. Additionally, 
they found that T-cell dysfunction in these tumors was 
linked to increased VEGF expression, and combination 
therapy of ICIs with anti-VEGF therapy could poten-
tially improve therapeutic outcomes. This provided the 
preclinical rationale for the phase III IMbrave150 trial, 
which compared combination atezoliumab and bevaci-
zumab to sorafenib in patients with unresectable HCC 
who have not received prior systemic therapy20. In this 
study, 336 patients were treated with atezoliumab at a 
dose of 1,200 mg plus 15 mg/kg of bevacizumab intra-
venously, while the sorafenib group received 400 mg 
twice daily. The coprimary endpoints were OS and PFS 
by RECIST v1.1. With a median follow-up of 8.6 months, 
the trial demonstrated statistically significant and clini-
cally meaningful improvement in both OS (median OS 
for the atezoliumab + bevacizumab group not reached 
versus 13.2 months in the sorafenib group) and PFS 
(median PFS of 6.8 months in the atezoliumab + bevaci-
zumab group versus 4.3 months in the sorafenib group20. 
Grade 3–4 adverse events occurred in 57% of patients 
in the atezoliumab + bevacizumab group versus 55% in 
the sorafenib group. The safety profile of the combination 
was similar with known safety profile of each individual 
drug. This study is practice changing as this combination 
treatment may soon replace sorafenib as first-line treat-
ment for advanced HCC pending regulatory approval. 

Tumor-Infiltrating Lymphocytes 

Intratumoral immune cell density have previously 
been correlated with survival in HCC. High densities of 
CD3+ and CD8+ T cells both intratumor and along the 
tumor margin of HCC samples were found to be sig-
nificantly associated with lower recurrence rates and 
prolonged recurrence-free survival112–114. Additionally, 
tumor-infiltrating NK cells have also been associated 
with prolonged survival in HCC115. Similarly, higher den-
sities of TILs have been associated with good prognosis 
in other types of cancers such as colorectal cancer and 
melanoma116,117. These findings suggest that both baseline 
and posttreatment TIL density could be important mark-
ers of response to ICI treatment. Indeed, this has led to the 
investigation of TILs as a biomarker of response to ICIs 
in numerous cancers. In patients with melanoma treated 
with pembrolizumab, Tumeh et al. found that presence of 
CD8+ TILs, which also was associated with higher PD-1/
PD-L1 expression, correlated with radiographic reduc-
tion in tumor size118.

TILs have also been investigated as a biomarker of 
response to ICIs in HCC. Kaseb et al. found that clinical 
response in patients who received combination check-
point inhibitor (nivolumab and ipilimumab) followed 
by surgical resection of HCC tumors correlated with an 
increase in CD8+ T-cell infiltration and specifically with 
two effector T-cell clusters (CD3+CD8+CD45RO+Eomes+ 

and CD3+ CD8+ CD45RO+Eomes+ CD57+ CD38low 

clusters)119. However, it is important to note that T-cell 
infiltration was already present in the tumor prior to treat-
ment, likely due to chronic HCV infection. This study is 
currently ongoing, and final results may provide insight 
on the use of TILs as a biomarker. Further work is needed 
to clarify if background viral infection plays a role in the 
utility of TILs as a prognostic biomarker in HCC. 

Circulating Soluble Factors

Circulating soluble factors such as cytokines have 
been investigated as biomarkers of response to ICIs. 
Recently, Feun et al. analyzed several representative cir-
culating biomarkers before treatment and after 60 to 90 
days of treatment with pembrolizumab in unresectable 
HCC patients and at the time of tumor response or dis-
ease progression91. Using enzyme-linked immunosorbent 
assay (ELISA), they detected interleukin-1b (IL-1b), 
IL-6, IL-8, IL-12, IL-18, IFN-g, TGF-b, IL-10, CXCL9, 
CCL4, CCL5, PD-L1, and PD-L2 from patient plasma. 
They found that low baseline levels of TGF-b were sig-
nificantly associated with improved OS and PFS after 
treatment with pembrolizumab. This study is in line with 
a previous study by Mariathasan et al., which shows that 
TGF-b attenuates tumor response to PD-L1 inhibition by 
excluding CD8+ effector T cells from the parenchyma120. 
TGF-b is known to promote immunosuppression through 



IMMUNE CHECKPOINT INHIBITORS IN LIVER CANCER 59

various mechanisms such as impaired differentiation or 
activation of innate and adaptive immune cells, inhibi-
tion of cytotoxic T-cell function, and impaired regulation 
of cytokine production121. Taken together, this suggests 
that TGF-b could be used as a predictive biomarker for 
response to PD-1/PD-L1 blockade. 

Epithelial-to-Mesenchymal Transition

The TME has been shown to play a role in the mecha-
nism of resistance to ICIs. Epithelial-to-mesenchymal 
transition (EMT) has been implicated as a resistance 
mechanism in HCC. EMT is known to promote immune 
evasion of cancer cells through Snail signaling122,123. Ueno 
et al. have shown that there is an association between 
EMT and PD-L1 expression in extrahepatic cholangio-
carcinoma124. Shrestha et al. analyzed 422 HCC patient 
samples from the The Cancer Genome Atlas (TCGA) 
liver cancer database and found that high expression of 
PD-L1 and EMT markers (vimentin and E-cadherin) 
was significantly correlated with poor survival29. In fact, 
drugs that inhibit both PD-L1 expression and EMT have 
been developed for use in non-small cell lung cancer125. 
This correlation between PD-L1 expression and EMT 
presents an opportunity to investigate EMT as a potential 
biomarker for ICI response. 

OVERCOMING RESISTANCE

Despite the success of ICIs, approximately 85% of 
HCC patients do not respond to ICIs. Newer approaches to 
overcome resistance to ICIs are desperately needed. One 
proposed mechanism of resistance to ICIs is the overex-
pression of alternate immune checkpoints such as T-cell 
immunoglobulin, mucin domain-3 protein TIM-3, and 
LAG-3126–128. A study by Thommen et al. showed a posi-
tive association between progressive T-cell exhaustion and 

increased coexpression of these alternate checkpoints in 
non-small cell lung cancer including BTLA129. This work 
provides a rationale for combination checkpoint therapy 
to increase efficacy of ICI therapy. In a preclinical study, 
pembrolizumab in combination with lenvatinib was 
shown to suppress tumor-associated macrophages, regu-
latory T cells resulting in decrease in TGF-b, IL-10, and 
downregulation of PD-1 and Tim3130. The combination of 
lenvatinib and pembrolizumab is on fast track designa-
tion by the FDA for the treatment of unresectable HCC. 
Combination therapy involving ICIs and antiangiogenic 
medications may work synergistically because VEGF-A 
inhibition increases tumor infiltration and survival of 
cytotoxic T lymphocytes, thereby producing a favor-
able microenvironment for ICIs to function131. Currently, 
combination atezoliumab and bevacizumab is also on 
fast track designation by the FDA for first-line treatment 
of HCC. Table 2 lists ongoing classes and examples of 
combination therapies that are being investigated in HCC 
cancer. In fact, it is possible that immunotherapy in HCC 
may move to combination triple therapy as one study has 
shown the efficacy of combination of PD-L1 blockade 
and CD137 plus OX40 (immunostimulatory agonists) 
against spontaneous liver cancer in transgenic mice132. 
One of the major limitations of combination therapy is 
significant immune-related adverse events from the treat-
ment. Although these toxicities are rare, clinicians should 
always monitor for these events.

Another strategy to improve efficacy of ICIs is by 
priming adaptive response through treatments that release 
tumor antigens such as the addition of radiofrequency 
ablation (RFA), transarterial chemoembolization (TACE), 
transarterial radioembolization (TARE), stereotactic body 
radiation therapy (SBRT), or conventional chemotherapy51. 
Adaptive immune response can be primed by vaccines 

Table 2. Classes of Therapies in Combination Therapy With Checkpoint Inhibitors in Hepatocellular Carcinoma

Class of Therapies
Examples of Combinations 

Currently Tested Rationale

Combination with another check-
point inhibitor

Anti-PD-1/PD-L1 and CTLA-4; -PD-L1 
and TIM-3; -PD-L1 and LAG-3

Inhibition of alternate inhibitory pathway in 
immune cells; increase number of activated 
CD8+ T cells156

Combination with multikinase 
inhibitor or antiangiogenic drug

Anti-PD-1/PD-L1 with sorafenib; Anti-
PD-1/PD-L1 with levantinib; Anti-
PD-L1 and apatinib; Anti-PD-L1 with 
bevacizumab (IMbrave150)

Reduces immunosuppressive Tregs and MDSCs; 
antiangiogenic properties may increase tumor 
hypoxia and enhance expression of immune 
checkpoint molecules157

Combination with local therapy Anti-PD-1 with TACE; Anti-CTLA-4 
with RFA/TACE

Enhanced immune cell activation and recruit-
ment158; upregulation of soluble PD-L1159

Combination with oncolytic virus Anti-PD-1 with Pexa-Vec (JX-594) Promotion of NK and T-cell tumor infiltration160

Combination with polypeptide Anti-PD-1 with DSP-7888 
(NCT03311334)

Polypeptide HCC vaccine to expand preexisting 
neoantigen-specific T-cell population

Combination with antibiotics Anti-PD-1 with vancomycin and tadalafil 
(NCT03785210)

Oral antibiotic alters gut commensal bacteria 
inducing antitumor effect



60 ONUMA ET AL.

that use tumor-specific peptides to increase antigen pre-
sentation133. In a preclinical study, Chen et al. evaluated 
the effect of microwave ablation of subcutaneous hepa-
toma followed by combination intratumoral microspheres 
encapsulating GM-CSF and anti-CTLA-4 administration34. 
They found that this combination therapy resulted in local 
eradication of tumors and, surprisingly, led to rejections 
of tumors following rechallenge, including distant metas-
tasis34. Radiation therapy has previously been shown to 
have a synergist effect in combination with ICIs134. There 
are several ongoing clinical trials (NCT03143270 and 
NCT01853618) looking at combination ICIs with local 
therapy (TACE or RFA)35. Tremelimumab in combination 
with tumor RFA leads to accumulation of intratumoral 
CD8+ T cells and is a potential treatment combination for 
patients with advanced HCC35. The results of these studies 
may shed light on another therapeutic option to improve 
the efficacy of ICIs in HCC.

T cell stimulation by delivering an oncolytic virus into 
the tumor can promote tumor infiltration and maturation 
of T and NK cells135. The oncolytic virus, which can some-
times be genetically modified, selectively targets and kills 
tumor cells in addition to stimulating the host’s immune 
system136,137. In melanoma, tamilogene laherparepvec 
(T-VEC) was the first approved oncolytic virus to be used 
in combination with ipilimumab or pembrolizumab and 
was found to have better efficacy than with monother-
apy ICI138. JX-594, an oncolytic poxvirus, has been tried 
in patients with refractory primary and metastatic liver 
cancer and was found to be well tolerated139. There is an 
ongoing phase I/IIa clinical trial (NCT03071094) looking 
at the safety and efficacy of combination nivolumab with 
oncolytic viral therapy (Pexa-Vec) in advanced HCC.

The importance of gut microbiota in modulating key 
processes of inflammation and immunity has been a 
focus of recent studies. Alterations in the gut microbiota 
have been implicated in the progression of chronic liver 
disease and in the development of HCC140,141. Some stud-
ies have highlighted the relationship between gut micro-
biota and response to treatment with ICIs142,143. Sivan et 
al. found that oral administration of Bifidobacterium in 
combination with anti-PD-L1 therapy improved tumor 
control by increasing the accumulation of CD8+ T cells in 
melanoma142. It is unclear whether gut microbiota has a 
role in ICI response in HCC. There is an ongoing phase II 
trial (NCT03785210) looking at combination oral vanco-
mycin, tadalafil, and nivolumab in patients with advanced 
HCC. The result of this study will hopefully shed light 
on the efficacy of altering the gut microbiome in patients 
with HCC who are on checkpoint inhibition. 

FUTURE PERSPECTIVES

Since its introduction, ICI therapy has significantly 
changed the treatment of numerous malignancies 

especially in situations where there have been fewer 
alternatives. Despite its success in various malignancy, 
only very few patients with advanced HCC benefit from 
checkpoint inhibition. Understanding the mechanism of 
resistance and proper patient selection will hopefully pro-
vide better treatment results. The future of ICIs is reas-
suring as there are many ongoing clinical trials that could 
discover better biomarkers of response, combinatory 
treatments, and uncover newer methods of overcoming 
resistance to immunotherapy. 
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