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Inflammation and Cell Death During Cholestasis:  
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Cholestasis results in blockage of bile flow whether the point of obstruction occurs extrahepatically or intrahe-
patically. Bile acids are a primary constituent of bile, and thus one of the primary outcomes is acute retention 
of bile acids in hepatocytes. Bile acids are normally secreted into the biliary tracts and then released into the 
small bowel before recirculating back to the liver. Retention of bile acids has long been hypothesized to be a 
primary cause of the associated liver injury that occurs during acute or chronic cholestasis. Despite this, a surge 
of papers in the last decade have reported a primary role for inflammation in the pathophysiology of cholestatic 
liver injury. Furthermore, it has increasingly been recognized that both the constituency of individual bile acids 
that make up the greater pool, as well as their conjugation status, is intimately involved in their toxicity, and 
this varies between species. Finally, the role of bile acids in drug-induced cholestatic liver injury remains an 
area of increasing interest. The purpose of this review is to critically evaluate current proposed mechanisms of 
cholestatic liver injury, with a focus on the evolving role of bile acids in cell death and inflammation.
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INTRODUCTION

Cholestatic liver injury is a common clinical occur-
rence wherein intrahepatic impairment of bile formation 
and excretion or extrahepatic blockade of the biliary tracts 
results in retention of bile acids or bile salts. Clinical 
obstructive cholestasis can be caused by events such as 
gallstones, impingement of pancreatic cancer onto the 
bile ducts, sclerosing cholangitis, or biliary stricture—all 
of which feature varying degrees of obstruction1–3. Acute 
cholestatic liver injury in patients, such as with gall-
stones, can commonly be resolved surgically. However, 
chronic diseases like biliary atresia, primary biliary cho-
langitis (PBC), progressive familial intrahepatic cholesta-
sis (PFIC), and primary sclerosing cholangitis (PSC) 
are difficult to manage without liver transplantation. 
These diseases present with similar pathology includ-
ing inflammation, major blockage of bile flow resulting 

in alterations in bile acid disposition, increases in serum 
transaminase levels indicative of liver injury, and substan-
tial fibrosis eventually progressing to cirrhosis and liver 
failure. While the root cause is fundamentally different, 
these diseases converge upon obstruction of biliary flow 
as the primary instigator of liver damage. Unfortunately, 
therapeutic development in this area has lagged behind 
other areas for multiple reasons, and ursodeoxycholic 
acid (UDCA) remains one of few nonsurgical treatment 
options. Surgical treatments, including liver transplanta-
tion, are available, but the shortage of livers worldwide 
makes this option impossible for many patients. The 
lack of solid models for any of these diseases further 
makes development of therapeutics difficult4. Finally, 
many patients with these diseases present with signifi-
cant obstruction, or even cirrhosis. At this point, it then 
becomes necessary to reverse the process rather than just 
limit damage to the liver, which complicates therapeutic 
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development. New agents are in clinical trials, but lim-
ited success has been observed outside of recent success 
with bezafibrate in PBC5. Limiting hepatic injury, reduc-
ing fibrosis, and increasing choleresis to remove exces-
sive bile acid levels remain likely mechanisms through 
which the disease states could be beneficially modulated; 
however, an increased understanding of how and why 
cholestasis causes liver injury is required to inform devel-
opment of new therapeutics.

Normal enterohepatic circulation of bile acids results 
in the unobstructed flow from hepatocytes, the cellular 
point of synthesis, through the biliary tracts, into the 
intestines, and then back to the liver through the hepatic 
portal vein. Bile acid uptake and export through tissues is 
mediated by a series of uptake and export proteins selec-
tively expressed on specific tissues to mediate this pro-
cess (Table 1)6,7. Expression of these proteins is largely 
controlled by transcription factors such as the farnesoid 
X receptor (FXR), as well as circulating hormones like 
fibroblast growth factor 156–9. Ultimately, the purpose 
of this flow is to aid in digestion, assist in excretion of 
endogenous and exogenous compounds, and regulate 
metabolism for nutrient uptake and usage. This is a highly 
efficient process, with minimal bile acid loss daily6,7,9.

Obstruction of any point in the biliary tracts results 
in substantial pathology. Cholestasis occurs most com-
monly either intrahepatically in the small cholangioles of 
the liver, at the apical membrane of hepatocytes, or extra-
hepatically in the common bile duct. Similarly, a number 
of laboratory models have been developed that attempt to 
mimic this process through either direct physical obstruc-
tion or biochemical disruption of the biliary tracts10,11. 
Consistently, all of these models result in: 1) disruption of 
the bile acid pool in regard to its constituent members, the 
quantities in different compartments, and the molecular 
mechanisms that control bile acid uptake and export and 
2) substantial liver inflammation, especially the recruit-
ment and activation of cytotoxic neutrophils. Mechanisms 
of cholestatic liver injury described by our group and  
others have largely focused on these events as precipi-
tating factors2,6,8,12–20. In spite of this, considerable debate 

still exists in the field as to what induces the characteristic 
hepatocyte cell death caused by cholestasis14,21. The pur-
pose of this review is to critically evaluate mechanisms 
of cholestatic liver injury, with a focus on the interplay 
between bile acids, cell death, and inflammation. We will 
attempt to point out major differences between animal 
models and what is understood about the human condi-
tion, while focusing on gaps in knowledge that can be 
addressed to push the field forward.

BILE ACIDS IN CHOLESTATIC LIVER INJURY

Synthesis, Regulation, and Metabolism of Bile Acids

Bile acids are involved in a number of different 
diverse liver processes including metabolism, regenera-
tion, and hormone signaling6,8. Bile acids are synthesized 
in the liver through well-described pathways involving 
oxidative metabolism by cytochrome P450s (Fig. 1)6,7. 
Cholesterol goes through a multienzymatic process 
ultimately controlled by CYP7A1 as the rate-limiting 
enzyme to produce one of two primary bile acids, cholic 
acid (CA) or chenodeoxycholic acid (CDCA)22,23. This 
process is acutely regulated by the transcription factor 
FXR, which is present in multiple tissues exposed to bile 
acids24–26. Activation of FXR by bile acids results in down-
regulation of CYP7A1 and other bile acid-metabolizing 
enzymes, downregulation of bile acid uptake proteins 
such as sodium taurocholate cotransporting polypeptide 
(NTCP), and simultaneous upregulation of proteins asso-
ciated with bile acid export such as organic solute trans-
porters (OSTs)26–34. These adaptive changes take place in 
multiple tissues and are designed to promote the excre-
tion of bile acids to reduce systemic levels (Table 1).  
Primarily in hepatocytes, bile acids are exported by the 
bile salt export pump (BSEP) and multidrug resistance 
(mdr) family proteins6,7. BSEP is a major driving force 
for bile flow and, thus not surprisingly, BSEP inhibition 
by therapeutic compounds is a noted cause of chole-
static liver and a major source of toxicity in potential 
therapeutics7,14,35. Similarly, genetic loss of MDR3 in 
humans results in progressive familial intrahepatic choles-

Table 1. Expression Patterns of Multiple Transporters in Multiple Tissues

Tissue Uptake Transporters Export Transporters

Liver (cell type)
 Hepatocytes From serum: OSTα/ß, NTCP, OATP To bile: MRP2, MDR2, BSEP

To serum: OSTα/ß, MRPs
 Cholangiocytes From bile: ASBT To serum: OSTα/ß
Colon From feces: ASBT To serum: OSTα/ß
Kidneys From serum: ASBT To serum/urine: MRP2, OSTα/ß

NTCP, sodium taurocholate transporting polypeptide; MRP, multidrug resistance-associated protein; MDR, 
multidrug resistance protein; OST, organic solute transporters; ASBT, apical sodium-dependent bile acid 
transporters, organic anion-transporting polypeptide.
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tasis, a genetic condition with prominent cholestatic liver 
injury, which is recapitulated in the mouse10. In summary, 
bile acid synthesis is tightly controlled by FXR and other 
bile acid synthetic genes, both physiologically and dur-
ing cholestasis, to control bile acid synthesis and enhance 
excretion, with the goal of maintaining normal metabo-
lism and nutrient uptake.

While they are commonly used experimentally as pri-
mary bile acids, the majority of circulating primary bile 
acids do not exist as CA or CDCA; rather, they are con-
jugated to either glycine or taurine by the enzyme bile 
acid-CoA:amino acid N-acyltransferase (BAAT) to pro-
mote hydrophilicity, presumably to help with solubility 
and reduce toxicity, or they are metabolized into other 
bile acids36–40. Taurocholic acid (TCA), taurochenode-
oxycholic acid (TCDCA), glycocholic acid (gCA), and 
glycochenodeoxycholic acid (gCDCA) are the most 
common circulating bile acids in humans in bile and 
serum, especially during cholestasis whether this is due 
to general obstruction or chronic disease such as with 
primary sclerosing cholangitis (Fig. 2)2,39,40. While rats 
also conjugate bile acids to glycine, multiple groups have 
now noted that glycine conjugation in the mouse is nearly 
absent2,39–41. While the mechanism is not well understood, 
murine BAAT strongly prefers taurine as a substrate, and 
thus bile acid conjugation is likely due to the preference 
of BAAT, but may be in part linked to either dietary tau-
rine/glycine intake, glycine metabolism from serine, or 

taurine synthetic metabolism36–38. Notably, the percentage 
of conjugated to unconjugated bile acids increases dra-
matically during liver injury2,39,40,42.

Bile acids are also metabolized by gut bacteria, as CA  
is dehydroxylated to deoxycholic acid (DCA), while 
CDCA is dehydroxylated to lithocholic acid (LCA)6,8. 
These secondary bile acids can also be conjugated to gly-
cine or taurine. While other metabolic processes includ-
ing sulfation and other hydroxylation reactions have 
been established, levels of these bile acids are relatively 
minor in most species, and the predominant reactions 
are conjuga tion by BAAT and dehydroxylation by gut  
bacteria43–46.

Bile Acid Disposition in Cholestatic Liver Injury

Cholestasis dramatically alters bile acid concentra-
tions in different compartments. Acute cholestasis in 
laboratory models results in dramatic increases in serum 
bile acid levels, that taper off, but remain elevated for a 
significant period47. The presence of high bile acid lev-
els in serum alone is insufficient to induce liver injury 
though48–50. In case studies, patients with constitutive loss 
of NTCP had extremely high serum bile acid levels and 
hyperbilirubinemia, but with minimal signs of overt liver 
toxicity48,49. Similarly, Myrcludex B, an NTCP-inhibiting 
polypeptide in use in patients for treating hepatitis B 
infection, is well tolerated in both rodents and human 
patients despite drastic increases in serum bile acid lev-
els associated with loss of hepatic uptake51,52. Moreover, 
Myrcludex B is protective against the primary laboratory 
cholestasis models including bile duct ligation (BDL), 
wherein the bile duct is surgically ligated to induce 
extrahepatic cholestasis, and 3.5-diethoxycarbonyl-1.4-
dihydrocollidine (DDC) administration, wherein DDC 
induces intrahepatic loss of bile flow53. Surprisingly this 
did not extend to the MDR2−/− mouse53. While the mecha-
nism has not been established, serum bile acids may also 
increase during noncholestatic liver injury42. This may be 
due to necrosis of hepatocytes with impaired uptake and 
increased release of intracellular stores, and is likely not a 
contributing mechanism to injury in all cases2,42.

Bile acids can be excreted into the urinary tracts and 
then removed from the body as an alternative means for 
excretion; however, long-term exposure results in kidney 
damage and indicates that the kidneys are not designed 
to continue this process chronically54,55. Cholemic neph-
ropathy is largely understudied clinically, but a recent 
study indicates that this process likely occurs in patients 
as well, and may represent an area of underappreciated 
clinical concern56. Overall, it appears that shunting bile 
acids into the plasma is a protective measure used by the 
liver to prevent cholestatic liver injury by reducing over-
all bile acid levels via urinary excretion and preventing 
accumulation in hepatocytes.

Figure 1. Bile acid synthesis. Bile acids are synthesized from 
cholesterol by cytochrome p450s (CYP) to either cholic acid 
(CA) or chenodeoxycholic acid (CDCA). Dehydroxylation by 
gut bacteria results in lithocholic acid (LCA) or deoxycholic 
acid (DCA). Conjugation of CA or CDCA to taurine/glycine  
results in taurochenodeoxycholic/taurocholic acid (TCDCA/TCA)  
or glycochenodeoxycholic/glycocholic acid (gCA/gCDCA). 
Dehydroxylated bile acids can also be conjugated to taurine/
glycine. Dehydrox., dehydroxylated.
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In contrast to serum levels, biliary levels of bile acids 
can change depending upon the point of cholestasis. After 
lithocholic acid feeding, biliary levels can rise acutely, 
but can alter over time due to the influx of water and other 
solutes that alter total volume15,57. This is partially accom-
modated through expansion and filling of the gallblad-
der, which is also a noted aspect of BDL and gall bladder 
physiology. In contrast, loss of BSEP or mdr2 results in 
loss of normal bile acid export and reduced biliary bile 
acid levels acutely and chronically10,58,59. This is consistent 
with the proposed function of BSEP, which shunts bile 
acids into the biliary ducts and promotes biliary flow58,59. 

Notably, both extrahepatic and intrahepatic cholestasis 
dramatically reduce the formation of secondary bile acids 
as they do not reach the intestine and thus are not metabo-
lized by gut bacteria2,47.

Cholestasis also results in alterations in intestinal bile 
acid levels (generally reducing them due to blockage 
in flow), which may be a therapeutic target8. Intestinal 
bile acids are typically reabsorbed by the apical sodium-
 dependent bile acid transporter (ABST)60,61. Recent 
efforts to reduce bile acid levels during cholestastic 
diseases using inhibition of ASBT have demonstrated 
that systemic reduction of bile acid levels can be highly 

Figure 2. Serum bile acid levels in human patients with or without cholestasis. Serum bile acids were measured in healthy or chole-
static patients (A), or healthy or patients with primary sclerosing cholangitis (B), or healthy or cholestatic patients with mixed etiology 
of cholestasis (C). Data adapted from References 2, 39–40. BA, bile acid.
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beneficial to liver disease, including cholestasis62,63. This 
is recapitulated by the use of cholestyramine, an agent 
that binds bile acids and forces their excretion through 
defecation64,65. More work is needed in this area to deter-
mine if bile acid pools can safely be restricted via this 
method, although this is a promising area for therapeutic 
development.

Finally, cholestasis results in dramatic increases in bile 
acid levels within hepatocytes47. This is potently coun-
terregulated by FXR, and likely other mechanisms, such 
that the initial rise in bile acid levels tapers off over time;  
however, the spike in intrahepatic bile acid levels has 
widely been attributed to be the primary cause of hepa-
tocyte cell death18,46,66–68. Furthermore, the presence 
of infarctions in the biliary tracts results in localized 
increases in bile acids, potentially exposing hepatocyte to 
mM levels of bile acids acutely that generate small foci 
of cell death. In spite of these data, species differences in 
susceptibility, metabolism, and physiology have made it 
difficult to translate in vitro findings to human disease, and  
bile acid-induced toxicity continues to be widely studied.

Bile Acid-Induced Hepatocyte Cell Death

Different bile acids induce cell death at different con-
centrations, and this is due to both relative hydrophobic-
ity and the current conjugation status of the individual 
bile acid2,18,69. Because it induces well-defined apoptosis 
in rat hepatocytes, or human hepatocellular carcinoma 
cells that overexpress NTCP, one of the most commonly 
used bile acid to induce in vitro cell death is gCDCA; 
however, neither mouse nor human hepatocytes undergo 
appreciable levels of apoptosis when exposed to these 
concentrations of gCDCA, and both require dramatically 
higher concentrations to undergo any degree of cell death 
at all2,70,71. Importantly, mouse and human hepatocytes 
undergo necrosis, and not apoptosis, when exposed to 
other bile acids2,57. Similarly, human patients have limited 
levels of caspase-cleaved cytokeratin-18 release associ-
ated with apoptosis, but dramatic increases in full-length 
cytokeratin-18 release associated with necrosis2. Blockade 
of apoptosis was cited as the primary mechanism of pro-
tection in a number of studies with interventions against 
cholestatic liver injury; however, a majority of the com-
monly used laboratory models do not demonstrate gold 
standard markers such as caspase cleavage, caspase activ-
ity, or histological evidence for apoptosis11,72–78. Even in 
the BDL model in the rat, wherein higher concentrations 
of intrahepatic gCDCA would be expected, only lim-
ited apoptosis is found, and this is countered by activa-
tion of nuclear factor κ light chain enhancer of activated  
B cells (NF-κB) that prevents widespread apoptosis79,80. 
As such, while bile acid-induced apoptosis was a lead-
ing hypothesis in the field for many years, the likelihood 
that it extends broadly to human disease is very unlikely. 

Although this does not preclude bile acid-induced cell 
death, the mechanisms that control this in both human 
and mouse hepatocytes are poorly explained because they 
do not follow the established mechanisms present in rat 
hepatocytes.

Despite differences in interpretation, a number of stud-
ies support the ideas that excessive bile acid levels can 
kill hepatocytes. While rats undergo apoptosis at gCDCA 
concentrations above 50 µM, human cells are largely 
resistant until concentrations above 500 µM to 1 mM in 
vitro2,70. Whether this difference in susceptibility between 
rat and human hepatocytes is due to relatively higher expo-
sure to glycine-conjugated bile acid under normal condi-
tions or other mechanisms is not currently known. As the 
normal bile acid pool in the mouse consists primarily of 
taurine-conjugated bile acids, the relative toxicity of the 
pool on its own is minimal2,39,40,81. In contrast, toxification 
of the bile acid pool by feeding hydrophobic bile acids 
results in considerable toxicity15,57,69. Both cholic acid 
feeding and lithocholic acid feeding result in cholestasis 
and cell death when given at high concentrations in the 
feed15,57,69. Notably in the lithocholic acid model, a role 
for inflammation was ruled out, and administration of 
bile acid concentrations equivalent to what hepatocytes 
are predicted to be exposed to was toxic in vitro support-
ing the idea that hydrophobic bile acids, when present in 
sufficient concentrations in vivo, can be directly toxic57. 
Importantly in this model, direct cholestasis, that is a 
reduction in bile flow due to obstruction, was observed 
confirming the cholestatic phenotype15. Notably though, 
LCA levels either conjugated or unconjugated are usually 
very low in cholestasis, and the likely reason is that gut 
bacteria metabolism is necessary for their generation and 
cholestasis blocks flow to the gut, and thus this model is 
highly artificial relative to human disease39,40.

Just as toxification of the bile acid pool increases cell 
death, detoxification of the bile acid pool reduces cell 
death. NorUrsodeoxycholic acid (nUDCA), a UDCA 
derivative, has been used to reduce liver injury caused by 
bile acids in a number of different models as it is a rela-
tively mild bile acid in toxicity that also promotes biliary 
flow, which has been proposed to help with excretion of 
bile acids and consequently prevent mitochondrial dam-
age induced by bile acid retention82. A recent experiment 
noted that mdr2−/− animals had higher levels of cholic 
acid, a more hydrophobic bile acid; however, when 
this mouse was fed hydrophilic bile acids, or when this 
mouse was crossed to the BSEP−/− mouse that produces 
largely hydrophilic bile acids, liver injury was reduced83. 
Experiments directly feeding a dose response of differ-
ent bile acids, even up to 3% UDCA, did not produce 
a significant increase in serum ALT values, despite the 
fact that it increased liver bile acid concentrations69. In 
this same study though, 1% cholic acid feeding produced 
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significant increases in serum ALT, although this occurred 
without a change in overall liver bile acid levels28. Serum 
bile acid levels were dramatically increased though, and 
as such, the point measured may have occurred after FXR 
counterregulation and shunting of bile acid to serum40. 
These experiments largely combine to indicate altera-
tions in bile acid pool size, and constituency dramatically 
affects the capacity of the liver to detoxify and prevent 
bile acid-induced injury.

Intrahepatic cholestasis has varying results with bile 
acid toxicity. Since its initial understanding, BSEP inhibi-
tion has routinely been proposed as a major cause of drug 
withdrawal due to drug-induced cholestatic liver injury84. 
The proposed mechanism was increased intrahepatic bile 
acid accumulation; however, BSEP knockout alone does 
not result in liver injury in mice or in cell lines59,85,86. In 
fact, many drugs that are BSEP inhibitors in vitro demon-
strate alteration in the bile acid pool and bile acid concen-
trations in media at concentrations significantly below 
their toxicity level87. Furthermore, when troglitazone, a 
known BSEP inhibitor, was given to BSEP KO HepaRg 
cells, the toxicity was enhanced88. Troglitazone can reduce 
conjugation of bile acid to taurine and further polarizes 
the bile acid pool toward glycine-conjugated bile acid 
acids89. This may be a mechanism through which trogli-
tazone induces cholestasis and subsequent liver injury89. 
As such, while excessive intrahepatic bile acid stores are 
likely a potential cause of cholestatic liver injury, simply 
blocking export is insufficient to induce toxicity in vitro, 
and thus other mechanisms may also be at play.

One of the characteristic histological findings with 
many types of cholestatic liver injury, including in labora-
tory models, is the presence of foci of liver necrosis (Fig. 
3). These foci are thought to be due to infarction of the sur-
rounding biliary tracts and leakage of bile into the hepatic 
parenchyma and are commonly referred to as bile infarcts 
or Charcot–gombault necrosis90. Biliary infarcts are noted 
in the BDL model, the mdr2−/− model, the LCA administra-
tion model, and in human patients2,16. It has been hypothe-
sized that mechanical stress weakens the small cholangioles 
in the liver, which increases susceptibility to infarction of 
the biliary tree resulting in leakage of bile91. A recent study 
has confirmed this using intravital two-photon imaging90. 
Biliary infarcts are initiated at the apical membrane of 
hepatocytes and expand from there along with hepatocyte 
cell death68. These infarcts are especially notable in the 
LCA model wherein electron microscopy pictures have 
detailed the formation of LCA precipitates that aggregate 
and irritate the cholangioles leading to rupture15. As these 
infarcts are commonly associated with major obstruction, 
it was surprisingly noted that UDCA levels actually wors-
ened injury levels in these animals16. As UDCA is thought 
to be far less toxic and potentially even helpful to biliary 
injury, these data indicate that biliary rupture is likely  

highly damaging to hepatocytes, even when the bile is 
relatively detoxified71. In contrast, the use of nUDCA 
benefited mice with partial obstruction, although not com-
plete obstruction92. Supporting these data, a recent study 
noted that knockout of sortilin, a trafficking protein that 
can affect bile acid metabolism, reduced bile acid pool 
size, which led to less infarction of the biliary tracts and a 
reduction in injury consistent with the idea that reduction 
in the bile acid pool size leads to reduced injury, likely 
due to reduced intrahepatic biliary pressure and reduced  
bile acid leakage into the parenchyma93.

Bile acid-induced toxicity is clearly dependent on a 
number of factors relating to individual bile acid levels, 
bile acid disposition, and relative degree of obstruc-
tion. The majority of the data points toward the same 
idea: reducing pool size, promoting conjugation to tau-
rine, pushing bile acids into serum or alternate excretion 
routes, and preventing complete obstruction all minimize 
liver injury.

CHOLANGIOCYTES: CRITICAL  
MEDIATORS OF THE EPITHELIAL  
BARRIER TO BILE ACID TOXICITY

Cholangiocytes are also critical mediators of chole-
static liver injury, and their relationship with cholestatic 
liver injury cannot be overlooked. The liver is interlaced 
internally with small biliary vessels termed bile canali-
culi that are lined with cholangiocytes. Canaliculi dump 

Figure 3. Bile duct ligation histology. H&E stain of a mouse 
liver 24 h post-bile duct ligation. Blue arrows represent inflam-
matory cells. Red arrows represent areas of feathery necrosis 
inside the infarct. green arrows on the 100× images represent 
obvious areas of infarction and cell death.
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bile acids generated by hepatocytes into larger cholan-
gioles and then into the greater biliary tracts. Export 
of bile acids generated by hepatocytes is mediated by 
transporters such as BSEP and mdr2 as aforementioned. 
Bile acids such as TCA stimulate proliferation of the 
cholangioles in order to handle increased bile load and 
prevent infarction94. One of the most important effects of 
cholangiocytes is maintenance of bile acid-independent 
bile flow via the hormone secretin and the protein anion 
exchanger 2 in addition to glutathione95,96. These proteins 
regulate secretion of bicarbonate and chloride anion, 
which then regulate water flux and drive biliary flow95. 
Cholangiocytes also express a number of bile acid recep-
tors including the apical sodium bile acid transporter  
(ASBT), sphingosine 1 phosphate receptor 2 (S1PR2), 
and TgR597. These receptors can mediate cholestatic liver 
injury. Loss of S1PR2 reduces BDL-induced cholestasis 
and fibrosis, but had minimal effect on hepatic injury as 
measured by ALT/AST97. Activation of TgR5 stimulates 
proliferation of cholangiocytes and protects against death 
receptor-induced cell death, which may be protective 
through maintenance of normal epithelial barrier against 
biliary infarction via stabilization of junctional adhesion 
molecule-A, and thus TgR5 agonism may represent a 
therapeutic target in cholestatic liver injury98,99. ASBT 
shunts bile acids from bile back into the liver through as 
a cholehepatic shunt, which may yield alternate excretory 
mechanisms100. Secretin upregulates ASBT and prolongs 
bile acid transit time by enhancing the shunt of bile acids 
back into hepatocytes providing a potential feedback 
loop101. Overall, cholangiocytes express a number of bile 
acid transporters that react to alterations in biliary flow 
by altering bile acid uptake and bile acid-independent 
flow. Moreover, cholangiocytes provide the critical epi-
thelial barrier against biliary rupture necessary for safely 
removing excess bile acid levels.

INFLAMMATION IN CHOLESTATIC LIVER 
INJURY: CAUSE OR CONSEQUENCE

Neutrophils and Cholestatic Liver Injury

Although cholestatic liver injury was hypothesized to 
be due to bile acid toxicity, other hypotheses also exist 
that explain why biliary rupture would be damaging to 
hepatocytes. Primarily, a number of studies have begun 
to elucidate intricate signaling networks mediated in part 
by the presence of high levels of bile acids that initiate 
a potent neutrophil-mediated inflammatory response. 
While a consensus has formed that inflammation occurs 
after biliary rupture or hepatic exposure to high levels of 
bile acids, the mechanisms that dictate inflammatory pro-
gression and its precise role in the injury process remain 
areas of intense study.

The most commonly cited inflammatory process after 
either BDL, bile acid feeding, or in the mdr2−/− model is 

the recruitment of neutrophils to areas of injury10,102–104.  
Initial results indicated a potential CXCL-mediated 
neutrophil recruitment pathway after BDL, which has 
largely been confirmed in the mouse105,106. Knockout of 
CCL2 resulted in sustained inhibition of BDL-induced  
liver injury and injury after cholic acid feeding107,108. 
Neutrophil recruitment happens as early as 6 h after 
BDL, consistent with the initial points of tissue dam-
age, and continues throughout the disease11. Studies 
have shown that prevention of neutrophil adhesion 
through either knockout of CD18 or knockout of inter-
cellular adhesion molecule-1 (ICAM-1) was protective 
against BDL-induced liver injury, as was knockout of 
P-selectin glycoprotein ligand-1 necessary for neutrophil 
adherence103,104,109. Neutrophils are hypothesized to kill 
hepatocytes through release of potent ROS forms such 
as hypochlorous acid, which induces cell death through 
increasing oxidative stress102,110,111. Furthermore, the lpr 
mutant mouse, which has a deficient immune response 
and autoimmune dysfunction due to mutation in Fas 
receptor, is also protected, independent of fas-induced 
apoptosis76. Similar results were obtained in the plasmi-
nogen activator inhibitor (PAI1−/−) knockout mouse, or 
Egr-1−/− mouse, both of which have knockouts for pro-
teins involved in initiating inflammation112,113. Knockout 
of osteopontin yielded an early decrease in liver injury 
after BDL that was not sustained, indicating it may have 
an acute role in the injury process114. The biliary release 
of osteopontin by cholangiocytes and cleavage by matrix 
metalloproteases generates a potent chemotactic factor, 
which is responsible for the initial recruitment of neu-
trophils and the early inflammatory injury114. In addition, 
biliary levels of bile acids induce chemokine formation 
in hepatocytes81. Notably, interleukin (IL)-17−/− animals 
had reduced injury, but this did not affect levels of biliru-
bin, serum bile acids, or alkaline phosphatase, indicating 
that the reduction in injury was purely associated with a 
change in inflammation, and not with the relative level 
of cholestasis in the animal115. As such, several lines 
of research have converged on the idea that inflamma-
tion can mediate a portion of the injury, especially after 
the initial biliary rupture1,14,16,90. Even still, this may be 
dependent on the model, and no data to the authors’ 
knowledge has fundamentally demonstrated a role for 
inflammation in hepatocyte death in human patients with 
any specific form of cholestatic liver injury. Moreover, in 
human patients, significant quantities of glycine-conju-
gated bile acids are present that could justifiably induce 
cell death during cholestasis. Figure 4 depicts mecha-
nisms of neutrophil-induced liver injury in the mouse  
BDL model.

Chronic administration of α-naphthyl isothiocyanate  
(ANIT) shares many aspects of BDL-induced liver 
injury. Inflammation is also prominent in the model, and 
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blockade of inflammation reduces liver injury. This is a 
neutrophil- and Egr-1-dependent injury process similar 
to BDL116–118. These data support the idea that inflam-
mation, especially neutrophils, can promote cholestatic  
liver injury.

Kupffer Cells and Inflammatory Mediators  
in Cholestatic Liver Injury

A number of other inflammatory cells might be 
involved in inflammation during cholestasis. Kupffer 
cells are resident tissue macrophages in the liver that 
also have implications in BDL-induced liver injury. 
Kupffer cell inactivation with gadolinium chloride pro-
tects against BDL-induced liver injury and reduces neu-
trophil recruitment leading to reduced liver injury73,119. 
In contrast, Kupffer cell depletion with clodronate 
liposomes enhances injury120. Notably, IL-6 deple-
tion also worsens injury and is thought to be mediated  
by Kupffer cells in the model, indicating that IL-6 
might have an anti-inflammatory role in the model, 
which is recapitulated by the fact that recombinant IL-6 
administration is also protective120. Both dendritic 
cells and T cells have also been observed to cause 
differences in BDL-exposed animals; however, the 
role of the adaptive immune system generally is less  
well understood121–123.

Inflammation is also a likely consequence of most 
types of liver injury. Necrosis of hepatocyte results 
in release of sterile mediators referred to as damage-
 associated molecular patterns (DAMPs) that can initiate 

inflammation including mitochondrial DNA, nuclear DNA  
fragments, ATP, and more124,125. Receptors for many of 
these products are present on Kupffer cells and even 
hepatocytes and can initiate an inflammatory response124. 
Notably, bile acid levels are also increased dramati-
cally in noncholestatic forms of liver injury such as with 
acetaminophen overdose42. Bile acids also have signal-
ing pathways mediated by receptors such as g-protein-
coupled bile acid receptor (TgR5) on Kupffer cells that 
mediate inflammation, indicating that bile acids them-
selves may be an underappreciated DAMP65. Moreover, 
bile acids also directly induce inflammation in hepatocyte 
in murine hepatocytes in an Egr-1-dependent manner81,126. 
Regardless, a causative role for neutrophil-mediated 
liver injury is implied through experiments with knock-
out of mediators of neutrophil adherence and recruit-
ment that implicate inflammation directly103,104,113,127. 
Inflammation is directly tied to biliary pressure and 
degree of cholestasis, and thus, completely separat-
ing bile acid accumulation and inflammation is nearly  
impossible in determining a concrete mechanism.

Cholangiocytes and the Senescence-Associated 
Secretory Phenotype

Cholangiocytes are known to undergo senescence-
like changes during cholestasis, resulting in the senes-
cence-associated secretory phenotype that promotes 
inflammation. Biliary cells are especially prone to cel-
lular senescence, and their presence is noted in chronic 
cholestatic diseases such as PBC128. Cellular senescence 
in the liver initiates a paracrine signaling pathway that 
exacerbates DDC-induced liver injury through enhanced 
secretion of proinflammatory and profibrotic media-
tors128–130. Senescence is known to promote inflammation, 
and thus biliary senescence may be a major mediator of 
inflammation, especially in the later stages of advanced 
cholestasis.

BILE ACID-INDUCED PROINFLAMMATORY 
SIGNALING: A NEW HYPOTHESIS?

In contrast to experimental evidence in favor of a 
neutrophil-mediated injury response, defining the sig-
naling pathway is polluted and made more difficult by 
activation of a number of proinflammatory signaling 
cascades through generalized inflammation and cell 
death. As such, detailed investigations into the inflam-
matory process have proven difficult. One area where 
a consensus is building is in proinflammatory signal-
ing induced by bile acids in isolated hepatocytes. Initial 
studies indicated that a number of different conjugated 
and unconjugated bile acids can induce proinflamma-
tory signaling changes in isolated murine hepatocytes81. 
This was most prevalent with TCA, which dramatically 
enhances expression and secretion of cytokines such as  

Figure 4. Proposed model of neutrophil-induced injury. Infarc-
tion of the biliary tract results in hepatocyte damage and release 
of bile acids (BA) and damage-associated molecular patterns 
(DAMPs). This releases cytokines like CXC-ligands 1 and 2 
or IL-17 and increased early growth factor response-1 activity. 
Neutrophils (PMN) recognize these signals and adhere firmly 
to hepatocytes via CD18/intercellular adhesion molecule-1 
(ICAM-1) and induce cell death through ROS production.
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CXCL1 and CXCL2 as well as expression of ICAM-
181. This pathway is dependent on Egr-1126. These same 
cytokines have been directly implicated in BDL-induced 
injury, and this process was noted to occur indepen-
dently of FXR, meaning an entirely separate bile acid 
signaling pathway is present in hepatocytes that medi-
ates this interaction independently, which does not occur 
with isolated nonparenchymal cells81,107. TCA-mediated 
increases in CCL2 may also mediate other forms of 
injury such as carbon tetrachloride, wherein the process 
is dependent on c-jun N-terminal kinase signaling131. 
Subsequent studies showed increases in IL-17A and 
IL-23A expression after TCA exposure in hepatocytes, 
indicating the hepatocyte-mediated proinflammatory 
pathway likely has a direct linkage to the subsequent 
inflammation found in the BDL model115. The recep-
tor or mechanism responsible for the initiation of this 
signaling pathway is not currently well understood, 
although multiple receptors have been established as 
bile acid receptors including S1PR2, TgR5, and likely 
more65,132. Figure 5 depicts a simplified version of  
this pathway.

Bile acid-induced proinflammatory signaling changes 
as observed in mouse hepatocytes were not repeatable in  
primary human hepatocytes or in HepaRg cells, a hepa-
tocyte-like cell line that expresses some bile acid transport-
ers, exposed to TCA2,133. However, later studies indicated  

that gCDCA did induce expression of human cytokines 
at concentrations of 50 µM107. A diverse array of diseases 
present with increased inflammation and increased serum 
bile acid levels, and subsequent enhancement of inflam-
mation may be involved broadly in liver inflammation in 
addition to the role of bile acids in metabolism.

FUTURE PERSPECTIVES

Cholestasis definitively results in considerable hepa-
tocyte cell death. Recent studies have indicated sepa-
rate roles for bile acids and inflammatory cells, but 
both likely contribute to the disease. Moreover, bile 
acids themselves are likely a highly proinflammatory 
DAMP-like molecule, and their removal may benefit 
other disease states. Depending on the model, the degree 
of inflammation may be sharply tied to the degree of 
cholestasis, and thus, the degree to which inflamma-
tion contributes is likely dependent on the location of 
obstruction and pathological sequelae. As such, thera-
peutics that enhance excretion of bile acids in these 
patients are likely to be of benefit for both the reduction 
in inflammation and the reduction in intrahepatic bile 
acid levels. Reducing levels of toxic bile acids may also 
benefit patients. Critical questions remain in the field 
though, primarily: 1) How do we safely alter conjugation 
status of bile acid pools to promote conjugation to tau-
rine and reduce direct bile acid toxicity? 2) What is the 
role of inflammation in human diseases with prominent 
cholestasis and can reduction in inflammation acutely 
or chronically benefit patients and/or stave off liver 
transplantation? 3) Can alterations in bile acid-induced 
inflammation reduce injury in other disease states with 
increased bile acid levels? 4) What is the most effective 
way to reduce systemic bile acid levels without induc-
ing toxic effects? Novel studies answering these ques-
tions could potentially reshape patient treatment in this  
disease space in the near future.
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