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Directed differentiation of hepatocytes from induced pluripotent stem cells (iPSCs) holds promise as source 
material for treating some liver disorders. The unlimited availability of perfectly differentiated iPSC-derived 
hepatocytes will dramatically facilitate cell therapies. While systems to manufacture large quantities of iPSC-
derived cells have been developed, we have been unable to generate and maintain stable and mature adult 
liver cells ex vivo. This short review highlights important challenges and possible solutions to the current state 
of hepatocyte biofabrication for cellular therapies to treat liver diseases. Successful cell transplantation will 
require optimizing the best cell function, overcoming limitations to cell numbers and safety, as well as a num-
ber of other challenges. Collaboration among scientists, clinicians, and industry is critical for generating new 
autologous stem cell-based therapies to treat liver diseases.
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INTRODUCTION

The demand for transplantable livers has increased 
progressively, outpacing the supply of live and cadaveric 
organs; this results in longer waiting time for the patients, 
reducing their prospective survival rate1. Additionally, it 
is projected that the demand for livers will increase by 
10% in 10 years and 23% in 20 years1. Several strategies 
have been explored to increase the number of livers avail-
able for transplantation: i) The use of marginal donors 
(e.g., donors over the age of 60; donors with greater than 
30% hypernatremia or macrosteatosis, donors with posi-
tive serologies for the hepatitis C or hepatitis B virus, 
donors with a cold ischemia time of greater than 12 h, 
non-heart-beating donors, and grafts from split livers or 
living related donors)2; ii) machine perfusion approaches 
to resuscitate marginal donor livers3; and iii) novel cell 
therapies to induce tolerance4. However, if successful, 
these approaches are estimated to have limited impact 

on the organ donor pool1. New regenerative approaches 
to investigating the liver organogenesis seek to provide 
novel insights into liver repopulation. Liver cell ther-
apy has been under intensive investigation for decades5 
and seen as a promising potential alternative to ortho-
topic liver transplantation. We have learned that the 
ideal candidates for this kind of therapy are individuals 
with acute liver failure and liver-based inborn errors of 
metabolism6,7. Indeed, published experiences of liver cell 
therapy in the treatment of these conditions have shown 
promising results5. However, only partial correction of 
metabolic disorders has been achieved, and liver cell 
therapy has not shown to reliably circumvent the need 
for traditional organ transplant. While a detailed clini-
cal report is beyond the scope of this article, it is noted 
that significant barriers persist limiting broader imple-
mentation of liver cell therapy that has been highlighted 
in a recent report that included a preclinical and clinical 
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approach8. The most important hurdles identified, besides 
the well recognized lack of hepatocyte source for trans-
plantation, were i) the ability to monitor the function 
and rejection of transplanted cells and ii) the ability to 
control rejection episodes in vivo. Thus, given the short-
term graft survival and immunological hurdles that have 
been identified in the latest hepatocyte allotransplanta-
tion trials, autologous gene-corrected and fully functional  
hepatocytes would be a desirable solution.

The aim of this minireview is to critically evaluate the 
current state of biofabricating autologous human hepa-
tocytes, underscoring important advancements that have 
occurred in the expanding field of cell engineering and dis-
cuss new exciting technologies that have the potential to  
change the landscape of liver replacement once and for all.

CHALLENGES IN GENERATING 
AUTOLOGOUS HUMAN HEPATOCYTES 

FOR TRANSPLANTATION

Induced Pluripotent Stem Cell-Derived Hepatocytes

Induced pluripotent stem cells (iPSCs) can be expanded  
indefinitely and differentiate into all cell types of the 
body, while maintaining genetic stability and are there-
fore a promising cell source of functional autologous 
hepatocytes9. Human iPSCs are generated by forced 
expression of specific pluripotency transcription fac-
tors10. Great progress has been made in exploring the 
differentiation capacity of iPSCs toward the hepatocyte 
lineage. Generating hepatocyte-like cells (HLCs) from 
iPSC is necessary taking into account multiple factors 
related to the differentiation process: extracellular matrix, 
media, and small molecules and supplements to provide 
adequate and in a timely manner cell signaling to guide 
pluripotent stem cells toward a definitive endoderm and 
finally hepatocyte-like cells. Great progress has been 
made in exploring the differentiation capacity of PSCs 
toward the hepatocyte lineage. Although specific cul-
ture conditions can differ, most protocols share a general 
three-step strategy based on liver development studies. 
The three basic steps are endoderm induction, generation 
of hepatic progenitors or hepatoblasts, and hepatocyte 
maturation. The endoderm induction is characterized by 
the use of activin A, FGF, and BMP4, which, together 
with the activation of WNT3, signal trigger the genera-
tion of endoderm cells11–15. The WNT pathway activation 
promotes FOXA2 activation via SOX1716. The differ-
entiation to hepatic progenitor or hepatoblasts is gener-
ated by the addition of HGF that induce the expression 
of HNF4a17–19 and a fetoprotein20. Other hepatic induc-
ers include FGF2, FGF4, and BMP4. Finally, hepatocyte 
maturation is the most critical step during generation of 
HLCs. Commonly oncostatin M (an interleukin-6-related 
protein) and dexamethasone (a glucocorticoid) are used 
to induce the expression of hepatocyte markers, such  

as albumin, CK18, some cytochrome p450, SErPINA1, 
ASGPr1, C/EBPa, and UGT1A121. Additionally, some 
functional assays, such as urea production, LDL uptake, 
and albumin production are used to evaluate the HLCs to 
primary hepatocytes22. Unfortunately, stem cell-derived 
HLCs do not possess all functions of mature hepatocytes. 
Liver maturation is complex and dynamic; full matura-
tion in humans can take as long as 2 years from birth and 
involves expression of several signaling pathways, such 
as those responsible for bile acid synthesis, drug metabo-
lism, and amino acid transport. Current efforts in many 
laboratories are focused on the study of components that 
promote hepatocyte differentiation and maturation includ-
ing growth factors, transcription factors, microrNAs, 
small molecules, and the microenvironment. Despite 
progress in advancing the differentiation of human stem 
cells into hepatocytes in vitro, cells that replicate the abil-
ity of human primary adult hepatocytes to proliferate and 
completely replace livers for clinical applications have 
not been achieved9,23. Moreover, HLCs usually show a 
fetal phenotype and function24,25.

To generate a functional hepatocyte, it is necessary to 
take into consideration the developmental pathways and 
the developmental microenvironment where interactions 
with other cells and their extracellular matrix may pro-
vide specific maturation cues25–27. However, despite the 
successful use of growth factors and cytokines to design 
protocols for definitive endoderm and approaches to 
promote hepatocyte specification, the implementation 
of approaches for final hepatocyte maturation remains 
elusive25–27. Components that promote hepatocyte matu-
ration including the dynamic changes that occurred after 
birth in the human liver (microbiota, circulation, nutri-
tion) that could be potentially used for in vitro approaches 
have been discussed elsewhere22.

Gene-Edited Hepatocytes: Essential for  
Autologous Transplantation

CrISPr/Cas9 system was reported for the first time 
in 198728, but it was not until 2005 that it was postulated 
as an immune adaptive system to multiple species of bac-
teria29. The natural function of this system is recognizing 
foreign DNA sequences in the bacterial genome and pro-
moting host protection through the destruction of these 
sequences. However, the major milestone in the develop-
ment of CrISPr/Cas9 was its application in mammalian 
cells to potentially treat multiple genetic diseases.

One could imagine two future scenarios. The first and 
more logical scenario is to genetically correct the defect 
directly in the patient via viral delivery systems [e.g., 
adeno-associated virus (AAV)]; however, this approach 
has been more challenging30. The targeting efficiency 
in somatic cells has been relatively modest (<1%) and 
failed to yield a distinct phenotype31. Alternatively, in 
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vivo selection was required to enrich the gene-edited 
cells32, limiting its application to only those genes that 
conferred a selective growth and survival advantage in 
vivo [e.g., fumarylacetoacetate hydrolase (Fah)]. Other 
disadvantages that have been detected using AAV are 
related to its known inflammatory properties following 
systemic administration that often provoke liver toxicity 
and rapid immune clearance of gene-modified cells33 and 
the likelihood of undesired genome editing in nontarget 
tissues or nonspecific off-target editing34,35. These limi-
tations justify the development and validation of robust 
tissue-specific in vivo gene-editing platforms (e.g., lipid 
nanoparticles36,37, mrNA38) that further minimize the 
risk of off-target gene editing in nontarget genes and/or 
nontarget tissues in the near future. The second scenario 
that one could imagine is where liver tissue could be col-
lected from patients with monogenic diseases, and gene 
correction could be achieved in vitro using the CrISPr/
CAS9 system. Those cells, which successfully under-
went functional gene correction, could then be selected 
and amplified in vivo using xenograft animal models to 
grow hepatocytes. A critical mass of modified, mature 
hepatocytes would be produced, which would enable the 
original patient/donor to receive an autologous hepato-
cyte transplantation of their own genetically corrected 
cells. Hurdles to this approach would need to be over-
come, including exposing patients to risky surgical resec-
tions and quickening the process of gene correction and 
selection, as isolated human hepatocytes are known to 
undergo rapid dedifferentiation in vitro. However, other 
cell sources could be used (e.g., human iPSC-derived 
hepatocytes).

The number of studies that use human primary hepa-
tocytes for gene editing is limited. This is related to the 
lack of efficient repopulation of animal models to evalu-
ate these cells in vivo. Wang et al. reported for the first 
time the knockdown of the PCSK9 gene in human hepa-
tocytes in vivo using the AVV- CrISPr/Cas9 system 
in FrG mouse model with a 47% efficiency39. Despite 
these promising results, the use of AVV has been related 
to hepatic injury due to AVV-induced immunogenicity40. 
The implementation of an alternative less immunogenic 
delivery system for CrISPr/Cas9, such as lipid nano-
particles, might resolve the immunological damage.

CrISPr/Cas9 gene editing can be used for the treat-
ment of monogenic liver diseases, caused by loss-of-
function mutations or deficient gene expression. The 
most recent approaches in hepatocyte gene editing have 
been used for treatment of metabolic diseases in in vivo 
systems. Yin et al. demonstrated the application in vivo 
of CrISPr/Cas9 system to correct the Fah mutation in 
a model of hereditary tyrosinemia type 1 (HT1), using 
hydrodynamic injection of Cas9-encoded plasmid and 
ssDNA donor template. This approach resulted in 33% 

corrected hepatocytes32. In a similar study, Yang et al. 
corrected ornithine transcarbamylase (OTC) deficiency, 
through the administration of AAV containing a CrISPr/
Cas9 system in neonatal OTC mice; they showed a 
reversion of the mutation in 10% of hepatocytes41. 
Interestingly, the same protocol applied to adult OTC 
mice resulted in 1.7% corrected hepatocytes, which was 
insufficient to rescue the OTC phenotype20. These results 
suggest a different pattern of response to gene editing in  
relation to hepatocyte maturation state.

If human iPSC-derived hepatocytes were to be used, 
then we envision the requirement of collection of any 
cells (e.g., blood, skin fibroblast, epithelial cells, etc.) 
from patients with monogenic diseases, as there are 
well-establish protocols for in vitro culture and expan-
sion of these types of cells. After that, these cells could 
be reprogrammed to pluripotency to generate iPSCs, 
and gene correction could be achieved in vitro using the 
CrISPr/Cas9 system. Moreover, screening and selec-
tion for the best clones after gene editing would not be 
a burden. resulting iPSCs can be screened and then 
undergo hepatocyte-directed differentiation. These HLCs 
could be amplified in vivo using xenograft animal mod-
els to grow hepatocytes. A critical mass of modified, 
mature hepatocytes would be produced, which would  
enable autologous hepatocyte transplantation (Fig. 1).

In Vivo Bioreactors to Expand Autologous Hepatocytes

To improve the amount and the maturation stage of 
the HLCs generated from iPSCs, animals could be used 
as in vivo bioreactors to mature and biofabricate large 
amounts of functional human hepatocytes for transplan-
tation. As discussed below, liver tissue could be collected 
from patients with monogenic diseases, hepatocytes could  
be isolated, and gene correction could be achieved in 
vitro using the CrISPr/CAS9 system. Those cells that 
successfully underwent functional gene correction could 
then be selected and amplified in vivo using xenograft 
animal models to grow hepatocytes. A sufficient cellu-
lar mass of modified, mature hepatocytes would be pro-
duced, which would enable the original patient/donor  
to receive an autologous hepatocyte transplantation of 
their own genetically corrected cells. In fact, human hepa-
tocyte gene correction has been reported39,42 (Fig. 1).

Genetically modified animals are the most suitable 
models to be used as a bioreactor. These models provide 
transplanted hepatocytes a strong advantage related to 
growth and repopulation of the host liver. Overexpression 
of an albumin–urokinase type plasminogen activator 
(uPA) fusion construct, which increases uPA concentra-
tion promoting liver damage, enables the transplanted cells 
to reconstitute over 90% of the liver mass43. In recent 
years, the most used animal model to evaluate the liver 
repopulation is the FrG; this mouse carries three knockout 
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genes: fumarylacetoacetate hydrolase knockout (Fah−/−), 
recombinase 2 gene (Rag2) knockout, and IL2 receptor g 
chain gene (Il2rg) knockout. Fah−/− modification offers 
the possibility to control liver injury using (2-nitro-4- 
trifluoro-methyl-benzoyl)-1, 3 cyclohexanedione (NTBC), 
which avoids the accumulation of degradation products 
of phenylanine and tyrosine, whereas rag2 and Il2rg 
knockout reduce the action of the immunological system 
on the transplanted hepatocytes44.

In relation to the previous mentioned approaches, Zhu 
et al. reported for the first time a method to overcome the 
pluripotent state to generate HLCs45. The process involved 
reprogramming the fibroblasts with OCT4, SOX2, and 
KLF4 to induce a plastic state, and then after 3 days the 
hepatocyte differentiation protocol was continued. The 
cells showed the common HLC features such as albumin 
production, HNF4a expression, and cytochrome activity. 
The authors argued that this approach reduced the tumor 
risk related to the expression of the pluripotency-specific 

genes. However, after transplantation (9 months) into 
FrG mice, the cells only achieved a 2% liver repopula-
tion. Importantly, this study showed that the HLCs gener-
ated in vitro could mature after transplantation, showing  
a gene expression profile similar to adult hepatocytes 
after laser capturing of liver repopulated nodules.

In order to generate large amounts of human hepato-
cytes in live bioreactors, mice naturally would not be suit-
able for this purpose due to the size restrictions. The pig is 
a more appropriate model because of its similarity in size, 
anatomy, and biology to humans46. It has been reported 
that generated and characterized FAH−/− pigs47 could be 
used to generate human hepatocytes. Moreover, severe 
combined immunodeficiency (SCID) pigs have been 
generated (naturally tolerant of xenotransplantation)48 
that could potentially be used to produce human hepa-
tocytes in combination with systems to exacerbate their 
liver repopulation abilities. Hurdles to this approach 
would need to be overcome, including establishment of 

Figure 1. Schematic representation of manufacturing approach of autologous hepatocytes for transplantation. Primary hepatocytes are 
isolated from the patient and edited with CrISPr/Cas9 to correct the pathogenic genomic alteration ex vivo. Then the edited primary 
hepatocytes are select and multiplied in a “bioreactor” to be transplanted in patients. Alternatively, fibroblasts/blood cells are isolated 
from the patient and edited for pathogenic mutations using CrISPr/Cas9 ex vivo. The cells are then screened and reprogrammed to 
produce induced pluripotent stem cells (iPSCs) in vitro. These corrected iPSCs are differentiated to generate hepatocytes, which are 
transplanted into a “bioreactor” to produce functional hepatocytes that can be used for transplantation in patients.
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facilities and protocols necessary to obtain clean piglets 
and the high cost associated to it49. One more potential 
less costly and more practical option is the use of rats as 
bioreactors. Assuming that SCID rats preconditioned to 
repopulate its liver with human hepatocytes can be cre-
ated, one can easily obtain 5–6 × 108 viable cells per rat 
liver. A total of 2.0 × 108 viable cells/kg is a hepatocyte 
dose that is proven to be safe and, to a certain degree, 
effective in humans8. Most candidates for cell therapy are 
small children with genetic liver disorders8; thus, only 
two to four rat livers would be necessary to treat a pediat-
ric patient (weighting up to 12 kg).

Culturing and gene correction of human iPSCs is an 
unexplored path with little research performed. Some 
evidence of the application of human iPSCs to correct 
metabolic and genetic disorders has been seen in in vitro 
conditions50–52. Zhang et al. have described a differentia-
tion protocol to produce gene-corrected human iPSCs to 
treat Wilson’s disease, which is caused by a mutation in 
the ATP7B gene resulting in a defective protein trans-
porter in the liver51. Gene correction reversed the effects 
of this genetic disease in vitro. In a similar fashion, Yusa 
et al. used a combination of zinc finger nucleases (ZNFs) 
and piggyBac technology in human iPSCs to achieve bial-
lelic correction of a point mutation (Glu342Lys) to cor-
rect a1-antitrypsin deficiency. They reported this method 
as being more efficient than CrISPr-mediated systems 
by preventing contamination of the host genome with 
residual nonhuman sequences50.

The major challenge in using gene editing is off-target 
point mutations where the base pairing between the target 
site and the sgrNA of Cas9 may not be perfect, leading 
to cleavage at sites with multiple mismatches53. A major 
concern of this mosaicism is the potential of tumor devel-
opment in vivo. Point mutations can also occur while 
culturing human iPSCs in vitro. Yoshihara et al. have 
reported the presence of de novo mutations that can occur 
due to genetic reprogramming of somatic cells to produce 
iPSCs54. These mutations are underrepresented but can 
cause severe DNA damage and have tumorigenic poten-
tial. The type of somatic cells and the method used to 
make iPSCs can also affect the occurrence of point muta-
tions8. Araki et al. generated nuclear transfer embryonic 
stem cells (ntESCs) from mouse embryonic fibroblasts 
(MEFs) and tail-tip fibroblasts (TTFs) and found fewer 
point mutations in TTF-derived iPSCs55. It continues to 
be a major hurdle that needs to be overcome to make 
autologous transplantation with gene-corrected cells a 
reality.
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