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The increasing prevalence of obesity has made nonalcoholic fatty liver disease (NAFLD) the most common 
chronic liver disease. As a consequence, NAFLD and especially its inflammatory form nonalcoholic steato-
hepatitis (NASH) are the fastest increasing etiology of end-stage liver disease and hepatocellular carcinoma. 
Physical inactivity is related to the severity of fatty liver disease irrespective of body weight, supporting the 
hypothesis that increasing physical activity through exercise can improve fatty liver disease. This review sum-
marizes the evidence for the effects of physical exercise on NAFLD and NASH. Several clinical trials have 
shown that both aerobic and resistance exercise reduce the hepatic fat content. From clinical and basic scientific 
studies, it is evident that exercise affects fatty liver disease through various pathways. Improved peripheral 
insulin resistance reduces the excess delivery of free fatty acids and glucose for free fatty acid synthesis to the 
liver. In the liver, exercise increases fatty acid oxidation, decreases fatty acid synthesis, and prevents mitochon-
drial and hepatocellular damage through a reduction of the release of damage-associated molecular patterns. In 
conclusion, physical exercise is a proven therapeutic strategy to improve fatty liver disease.

Key words: Nonalcoholic fatty liver disease (NAFLD); Nonalcoholic steatohepatitis (NASH); 
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INTRODUCTION

For millions of years, humans needed to invest sig-
nificant physical effort in gathering food to meet their 
nutritional needs, which has hard-wired our metabolism 
to efficiently store nutrients at rare moments of caloric 
abundance. However, in the current day and age, no phys-
ical activity is required to obtain a daily caloric load for 
most people in developed as well as developing countries. 
The resulting obesity epidemic has caused nonalcoholic 
fatty liver disease (NAFLD) to rapidly become the most 
common etiology of chronic liver disease1–3. NAFLD can 
progress to nonalcoholic steatohepatitis (NASH), which 
places patients at risk for developing end-stage liver dis-
ease (i.e., cirrhosis) in which hepatocellular carcinoma 
(HCC) may develop4. Of great concern is the observation 
that HCC can also develop in noncirrhotic NASH5. Of all 
common cancers in the US, HCC is the only tumor with 
an increasing mortality6.

Diet and lifestyle modification leading to weight loss 
of 10% or more has been proven to be an effective strat-
egy to achieve resolution of NASH in >90% of patients7. 
Unfortunately, greater than 50% of patients included in 
clinical trials have not been able to meet this weight loss 
threshold8. Likewise, treatment with medications, such 
as pioglitazone, vitamin E, or the bile acid derivative 
obeticholic acid, has been effective only in up to 45% 
of patients9,10.

Physical inactivity and its related reduced cardio-
respiratory fitness have been associated with increased 
NASH severity11. Among obese people, sedentary indi-
viduals have increased risks of having a fatty liver in 
comparison with weight-matched physically active indi-
viduals12. These data provide support for the hypothesis 
that increasing physical activity through exercise, defined 
as a planned, structured, and repetitive physical activity 
with a specific intensity, frequency, and duration, has 
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beneficial effects on NAFLD. Theoretically, it is also 
a cheap intervention with both therapeutic and preven-
tive value. Simultaneously, exercise can reduce risk fac-
tors for cardiovascular disease in NASH patients, such 
as diabetes and hypertension13. The American Gastro-
enterological Association, the American Association for 
the Study of Liver Diseases, and American College of 
Gastroenterology all recommend physical exercise as a 
treatment for NAFLD14. The current recommendations 
do not specify what exercise regimen is most beneficial, 
and the mechanisms by which exercise affects the liver 
remain, at least in part, unknown. Here we aim to review 
the existing evidence for the effects of physical exercise 
on NAFLD, as well as the mechanistic principles that  
have been elucidated through human trials and basic  
scientific studies.

EFFECTS OF EXERCISE ON  
BIOPSY-PROVEN NASH

The true outcomes of fatty liver disease are end-stage 
liver disease (ESLD) and HCC. No studies with longi-
tudinal follow-up have been performed to evaluate the 
effect of exercise on these outcomes, and such studies 
would probably not be feasible either. However, the  
liver’s remarkable regeneration capacity can result in the 
reversibility of steatohepatitis. It is most probably cor-
rect to assume that with recovery of NASH, the risks 
of developing ESLD and HCC are reduced as well. A 
small number of studies have used postintervention liver 
biopsy to evaluate the effect of exercise on the histologic 
reversibility of NASH. Eckard et al. performed a random-
ized controlled study on the effect of 6 months of various 
lifestyle modifications on NASH, including exercise and 
dietary modifications15. In this trial, the effect of a mod-
erate exercise regimen (20- to 60-min routine, 4–7 days/
week, including both resistance and aerobic training) 
with or without dietary intervention (unrestricted diet 
vs. low-fat diet vs. moderate fat/low-carbohydrate diet) 
was compared to a group undergoing no intervention. In 
each of the intervention groups there was a significant 
decrease in the NASH Activity Score (NAS), a histologi-
cal grading of NASH15. Similarly, a randomized control 
trial (RCT) of 31 NASH patients reported that 48 weeks 
of intensive lifestyle intervention (moderate-intensity 
exercise with a goal of >200 min per week, reduced 
calorie diet, and behavioral guidance) led to a 2.4 point 
reduction in the NAS on postintervention liver biopsy, a 
significantly greater reduction than in the control arm16. 
Another study evaluated 120 candidates for living liver 
donation who were encouraged to do aerobic exercise 
and restrict their calorie intake to 25 cal/kg, after liver 
biopsy showed at least 30% steatosis. On repeat biopsy 
after a median of 10 weeks of intervention, steatosis was 
improved in >85% of patients17. We can infer from these 

results that exercise has a beneficial effect on the rever-
sal of histologically proven fatty liver disease. However, 
because dietary interventions aiming at weight loss were 
included as well, these studies do not provide direct evi-
dence that the effect on the liver was mediated by exer-
cise or through the effect of weight loss.

EFFECTS OF EXERCISE ON NONINVASIVE 
MEASURES OF NASH

Although liver biopsy is the gold standard for diagnosis  
and grading of NAFLD, its risk of complications, poten-
tial to obtain nonrepresentative samples, and cost deter  
its widespread use18. Liver biopsy has therefore infre-
quently been used in the evaluation of the efficacy of 
exercise on NAFLD. Alternatively, several noninvasive 
techniques have been developed to assess liver fat con-
tent19, and their advantages and shortcomings are sum-
marized in Table 1. In general, these techniques measure 
liver fat content or liver stiffness as an indication of  
fibrosis and do not necessarily distinguish NASH from  
simple steatosis. Liver stiffness measured by magnetic  
resonance (MR) elastography, however, appeared to close ly 
correlate with a diagnosis of NASH on liver biopsy and 
had a sensitivity of 94% and a specificity of 73% to discern 
NASH from simple steatosis20.

Over the past decades, several trials have been  
performed using these surrogate endpoints to estimate  
the effect of physical exercise on NASH. Randomized 
trials reported since 2005 are summarized in Table 2. 
In 2012, Keating et al. performed a meta-analysis of 12 
trials (11 of them randomized) investigating the effect 
of exercise on liver fat content. In the pooled analysis, 
439 subjects were included. A small reduction in liver 
fat was seen, however, only if studies that looked at diet 
and exercise were left out of the analysis21. Most stud-
ies included were small (n = 14–45 in 11 studies with 
1 study of 130 subjects), and exercise regimens were 
often short (in 7 studies 10 weeks or shorter), which are  
potential reasons why the reported effect was limited.

Since Keating and colleagues’ meta-analysis, additional 
and larger RCTs have been done that clearly demonstrate 
the beneficial effect of physical exercise on NASH. Golabi 
et al. conducted a systematic review of these studies pub-
lished between 2011 and 2016. In this work, only trials of 
at least 8-week intervention were included. On reviewing 
eight randomized trials, the effect of physical exercise  
on the reduction of hepatic fat content was assessed. With 
the use of MR spectroscopy or liver biopsy, a pooled 
analysis of a total of 433 adult participants revealed a 
30.2% reduction in hepatic fat as a result of the exercise 
intervention, and a 49.8% reduction in liver fat resulting  
from exercise combined with dietary intervention22.

Whitsett et al. conducted a systematic review of  
18 studies23. Besides randomized trials, prospective and 
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well-conducted retrospective cohort studies were also 
included. The included studies together evaluated more 
than 6,000 patients with NAFLD, with two studies in par-
ticular having a study population greater than 1,000. The 
intervention duration varied greatly from 1 to 52 weeks, 
and the most commonly employed imaging modality to 
determine change in hepatic steatosis was hydrogen-MR 
spectroscopy (H-MRS). The authors concluded that exer-
cise significantly improves hepatic fat content.

A recent randomized trial not included in the above 
systematic reviews, but worth mentioning because of its 
relatively large size, was conducted by Wong et al. In this 
study of 145 NASH patients, lifestyle intervention (aero-
bic exercise, resistance exercise, and dietary restriction) 
demonstrated a 64% remission rate (i.e., achievement of 
<5% intrahepatic triglyceride content) in the intervention 
group, compared to a 20% remission rate in the control 
arm, which underwent no intervention24.

EXERCISE REGIMEN AND INTENSITY

Several studies addressed which modality, intensity, 
and duration of exercise are most efficacious in amelio-
rating NASH. A retrospective trial of 813 biopsy-proven 
NAFLD patients asking them to self-report on their phys-
ical activity status found that only those patients who met 
the vigorous exercise criteria, corresponding to 7 or more 
metabolic equivalents25, had a decreased odds ratio of 
developing NASH26. Those patients who doubled the time 
of recommended vigorous exercise further decreased the 
adjusted odds for advanced fibrosis26. Another self-reported  

retrospective trial from Japan, on the physical activity of 
1,149 patients with fatty liver disease, corroborated this 
finding. Vigorous physical activity showed a significant 
preventative effect in the progression of fatty liver to 
NASH27. Modified high-intensity interval training (HIIT) 
of five cycles of high-intensity cycling followed by 3-min 
recovery periods, three times/week for 12 weeks demon-
strated reduction in liver fat and improvement in early 
diastolic filling in 23 NAFLD patients compared to stan-
dard controls28. This improvement in early diastolic fill-
ing is beneficial to NAFLD patients, as it has been well 
documented that cardiorespiratory fitness, independent 
of visceral fat, is a predictor of liver fat11,29,30. These stud-
ies establish that vigorous exercise results in significant 
reduction in hepatic steatosis.

A number of studies tried to establish scientific evi-
dence for this matter in an experimental setting. A recent 
study of 48 overweight and obese patients compared 
aerobic exercise regimens of various doses and intensi-
ties31. Patients were randomly assigned to low-intensity/
high-volume, high-intensity/low-volume, low-intensity/
low-volume, or no exercise. Each exercise group expe-
rienced significant reduction in liver fat, but there was 
no significant difference between the different regimens. 
This led to the conclusion that aerobic exercise, even 
if done at low intensity and low volume, would have a 
beneficial effect on the reduction of liver fat31. Several 
randomized trials provide evidence that aerobic exercise 
indeed reduces hepatic fat content at different intensities 
and frequencies32–44.

Table 1. Noninvasive Modalities for Assessment of Fatty Liver Disease

Modality Technique Advantages Shortcomings

US Increased echogenicity makes steatotic 
livers appear brighter than spleen and 
kidney

Low cost; widely available;  
reasonable sensitivity/
specificity

Lower performance with steatosis <30% 
and in morbidly obese patients; operator 
dependent

US-CAP Measures the degree of ultrasound 
attenuation by hepatic fat using vibra-
tion control transient elastography

Can roughly distinguish steato-
sis categories

Overlap between stages; not validated in 
large patient cohorts

CT Decreased attenuation of fatty liver 
(10 HU less than spleen, or liver 
attenuation <40 HU)

Widely available Not sensitive for detecting mild steatosis 
(5%–30%); radiation exposure

MRS Protons in triglycerides resonate with 
specific spectral peaks 

High sensitivity; correlates 
strongly with the histological 
fat percentage 

Not widely available; increased cost, 
cannot be used as a screening tool

MRE Contrast MRI with a low frequency 
vibration source to assess stiffness

High sensitivity for fibrosis; 
differentiates between steatosis 
and NASH

Not widely available; long procedural 
time; low image resolution

Transient 
elastography

Velocity of electric shear indicates 
liver stiffness

Short procedure time; can be 
done at bedside; immediate 
results

Mainly looks at fibrosis; operator 
dependent; difficult to get accurate 
and valid results (requires at least 10 
measurements)

US, ultrasound; US-CAP, ultrasound with controlled attenuation parameter; CT, computed tomography; MRS, magnetic resonance spectroscopy; 
MRE, magnetic resonance elastography.



92 VAN DER WINDT ET AL.

Table 2. Randomized Controlled Trials of Exercise and the Effect on Nonalcoholic Fatty Liver Disease (NAFLD)

Reference n Exercise Intervention Main Results

Bacchi et al., 201345 40 AE vs. RE, 3×/week for 16 weeks Equal effects on reducing intrahepatic fat 
Balducci et al., 2015110 606 AE + RE vs. control, 2×/week for 12 

months
Reduced fatty liver index

Cassidy et al., 201339 28 AE vs. controls, 3×/week for 12 weeks Decreased hepatic lipid content, improve-
ment in cardiac function 

Cuthbertson et al., 201658 69 AE vs. control, 3–5×/week for 16 weeks Decreased hepatic lipid content, improved 
peripheral insulin sensitivity

Eckard et al., 201315 56 AE vs. AE + low fat diet, 4–7×/week for 
6 months

Decrease in NASH activity score on liver 
biopsy

Finucane et al., 201032 100 AE vs. control, 1×/week for 12 weeks Decreased hepatic lipid content, improved 
cardiorespiratory fitness

Goodpaster et al., 201033 130 Diet + AE for 6 months vs. diet + AE for 
12 months, 5×/week

12-Month intervention resulted in greater 
decrease in hepatic fat content, with equal 
reduction in insulin resistance

Hallsworth et al., 201146 21 RE vs. control, 3×/week for 8 weeks Decreased hepatic lipid content, improved 
insulin resistance

Hallsworth et al., 201528 29 High intensity AE vs. control, 3×/week for 
12 weeks

Decreased hepatic lipid content, improved 
cardiorespiratory fitness

Houghton et al., 201740 24 AE + RE vs. control, 3×/week for 12 weeks Decreased hepatic lipid content and plasma 
triglycerides

Larson-Meyer et al., 200834 23 Diet + AE vs. diet vs. control, 5×/week for 
6 months

Decreased hepatic lipid content

Lee et al., 201241 45 AE vs. RE vs. control, 3×/week for 
12 weeks

Decreased hepatic lipid content. RE 
improved insulin sensitivity

Levinger et al., 2009111 55 RE vs. control, 3×/week for 10 weeks No reduction in ALT/AST or inflammatory 
markers

Monteiro et al., 201542 32 AE vs. AE + RE vs. control, 3×/week for 
20 weeks

Decreased hepatic fat content

de Piano et al., 2012105 58 AE vs. AE + RE, 3×/week for 12 months AE + RE results in reduced ALT and insulin 
resistance, and increased adipokine levels

Promrat et al., 201016 31 AE + diet vs. control, 1×/week for 48 weeks Decrease in NASH activity score on liver 
biopsy

Pugh et al., 2013103 20 AE vs. control, 3×/week for 16 weeks No difference in hepatic fat content. 
Improved ALT/AST levels

Pugh et al., 2014104 31 AE vs. control, 3×/week for 16 weeks No difference in hepatic fat content. 
Improved ALT/AST levels. Improved car-
diovascular risk factors

Shah et al., 200935 18 Diet + AE/RE vs. diet, 3×/week for 6 
months

Comparable decrease in hepatic lipid content 
and insulin resistance

Shoojaee-Moradie et al., 200754 17 AE vs. control, 3×/week for 6 weeks No difference in intrahepatic fat content. 
Decreased circulating FFA, increased insu-
lin sensitivity 

Skrypnik et al., 2016106 44 AE vs. AE + RE, 3×/week for 3 months AE + RE results in greater reduction in ALT 
and AST

Slentz et al., 201143 196 AE vs. RE vs. AE + RE, 3×/week for 
8 months

Regimens including AE result in greater 
reduction in hepatic fat content, ALT and 
insulin resistance

Straznicky et al., 2012112 63 Diet + AE vs. diet vs. control, 300 min/week 
for 12 weeks

Decreased insulin resistance, ALT, g-GT; no 
significant differences between diet + AE 
and diet alone 

Sullivan et al., 201236 18 AE vs. control, 3×/week for 16 weeks Decreased hepatic lipid content, decreased 
circulating FFA, improved insulin 
sensitivity

(continued)
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Bacchi et al. conducted an RCT comparing the effects 
of resistance training versus aerobic training in 31 NASH 
patients over a 4-month period. In both arms of the trial, 
there was a significant reduction in liver fat on MRS. 
However, there was no difference between the two exer-
cise regimens45. Lee et al. also found a similar benefi-
cial effect of resistance exercise compared with aerobic 
exercise41. Hallsworth et al. reported on 19 patients with 
NAFLD who were either subjected to 8 weeks of resis-
tance training or no exercise. A significant reduction in 
liver fat was achieved46. Zelber-Sagi et al. also found a 
significant effect of resistance exercise on hepatic fat  
content38. On the contrary, in 29 obese/overweight adults 
who were randomized to either 8 weeks of resistance 
exercises or sham control exercise regimen no significant 
difference in liver fat by MR spectroscopy was achieved47. 
A randomized trial including 196 subjects revealed that 
regimens including aerobic exercise resulted in greater 
reduction in hepatic fat content than a resistance exercise 
program43.

In conclusion, although various exercise regimens have  
been shown to affect liver fat content, there is no defini-
tive evidence to recommend one regimen over another. 
Aerobic exercise has shown an effect on hepatic fat con-
tent in many studies, but resistance exercise may provide 
an option to patients unable to perform aerobic exercises, 
for example, due to a limited cardiorespiratory reserve. 
It is therefore emphasized in recent practice guidelines 
that the choice of training for patients with NAFLD 
should be tailored based on patients’ preferences and on 
the highest likelihood of continuation by the individual 
patient in the long term19,48.

THE EFFECT OF EXERCISE ON THE LIVER IS 
INDEPENDENT OF WEIGHT LOSS

Importantly, the decrease in the hepatic fat content was 
achieved even when overall weight loss was not observed 
in a multitude of studies15–18,22,31,45–47, which is consistent 
with the idea that exercise has a direct effect on the liver. 

However, the mechanisms by which exercise reduces 
liver fat are still greatly unknown. The next sections of 
this review summarize the available evidence on possible 
metabolic and molecular pathways involved in the reduc-
tion of hepatic fat by exercise.

EFFECTS ON INSULIN RESISTANCE  
AND FREE FATTY ACIDS

In order to begin to understand the molecular pathways 
that are involved in the effect of physical exercise on 
fatty liver disease, it is worth looking at other outcome 
measures than hepatic fat content. For example, insu-
lin resistance is thought to be a driving force in NASH 
and its related metabolic syndrome49. Improving insulin 
resistance is among the mechanisms by which physical 
exercise has been proposed to improve NASH. In sup-
port of this hypothesis, several studies in humans have 
reported on the beneficial effect of exercise on insulin 
resistance35–37,45,46,50–54. For example, in a comparative trial 
of 16 weeks of aerobic versus resistance training, Bacchi 
et al. used a euglycemic clamp technique to demonstrate 
that both programs substantially increased insulin sensi-
tivity, along with an improvement in other markers of the 
metabolic syndrome, like HbA1C and visceral fat45.

Mechanistically, insulin resistance in adipose tissue 
results in an incomplete suppression of lipase, leading to 
enhanced lipolysis and release of free fatty acids (FFAs), 
which are elevated in serum of NAFLD patients55,56 and 
are taken up by the liver57. An improvement in insu-
lin resistance is thought to reduce this flux of FFA to 
the liver (Fig. 1). In a randomized trial of 69 NAFLD 
patients, it was shown that 4 months of physical exer-
cise predominantly affects peripheral rather than hepatic 
insulin resistance58. Studies on the acute metabolic effects 
of exercise in 15 prediabetic adults confirmed that the 
improvement in insulin sensitivity mainly occurs in adi-
pose and muscle tissues59. Although some studies did not 
detect a significant reduction in fasting serum FFA46,58, 
several others have demonstrated a resulting decrease in 

Table 2. (Continued)

Reference n Exercise Intervention Main Results

Tamura et al., 200537 14 Diet + AE vs. diet, 5–6×/week for 2 weeks Decreased hepatic lipid content in both 
groups. Improved insulin sensitivity in AE 
group

Thompson et al., 200962 41 AE vs. control, 4×/week for 24 weeks Decreased IL-6, ALT, and FFA
Wong et al., 201324 154 AE vs. control, 3×/week for 12 months Decreased hepatic lipid content
Yoshimura et al., 2014113 33 Diet + AE vs. diet, 300 min/week for 12 

weeks
Equal decrease in hepatic lipid content

Zelber-Sagi et al., 201438 82 RE vs. control, 3×/week for 12 weeks Improved steatosis and inflammation 
Zhang et al., 201644 220 AE vs. control, 150 min/week for 12 

months
Decreased hepatic lipid content. Effect dis-
appeared when adjusted for weight loss

AE, aerobic exercise; RE, resistance exercise.



94 VAN DER WINDT ET AL.

FFA in human patients36,52,54,59–62, as well as in experimen-
tal rodent models of NASH63,64. In addition, it has been 
shown that FFA in return increases insulin resistance in 
skeletal muscle and that physical exercise can direct FFA 
into triglyceride formation with a resulting increase in 
insulin sensitivity65.

EXERCISE AND FATTY ACID SYNTHESIS

Insulin resistance in skeletal muscle is the cause of 
diversion of glucose to the liver for FFA synthesis (de novo 
lipogenesis)66. In addition to storage into triglycerides 
leading to steatosis, FFAs are considered the metaboli-
cally and immunologically active form of fat contributing 
to cell damage and inflammation that are characteristic 
of NASH (Fig. 1)67,68. Animal models have shown that 
the main transcription factor controlling lipogenesis, 
sterol regulatory element-binding protein 1 (SREBP-1), 
is elevated in the pathobiology of NASH69–71. The best 
available evidence that physical exercise can modify de 
novo synthesis of FFA in human patients with fatty liver 

disease is reported by Oh et al., who exposed middle-
aged, sedentary, obese men to exercise regimens in vari-
ous intensity and frequency. They found that 12 weeks 
of either resistance or high-intensity aerobic exercise led 
to a decrease in the expression of SREBP-1c in circulat-
ing peripheral blood mononuclear cells (PBMCs)52,72. As 
PBMCs have the same embryonic origin as liver cells, 
it is felt that they accurately represent the changes in 
hepatocytes.

In lipogenesis, acetyl-coA derived from the Krebs 
cycle gets converted into long-chain fatty acids facili-
tated by a number of enzymes, such as acetyl-CoA car-
boxylase (ACC), fatty acid synthase (FAS), elongases, 
and stearoyl-CoA desaturase 1 (SCD1) (Fig. 2). Although 
evidence in humans is limited (changes in levels of these 
enzymes in the studies by Oh et al. were nonsignificant), 
several rodent studies have shown that exercise reduces 
expression levels of FAS, elongases, and SCD1 in fatty 
livers, resulting in decreased levels of FFA and reversal of 
steatosis69,73–77. Exercise also increased phosphorylation 

Figure 1. Schematic overview of metabolic and molecular pathways involved in the pathobiology of nonalcoholic steatohepatitis 
(NASH) and the effects of physical exercise thereon. Peripheral insulin resistance causes an increase in delivery of glucose and FFA to 
the liver. FA synthesis further increases FFA levels. When the mechanisms for FA storage as triglycerides (steatosis) and metabolism 
(b-oxidation) become overwhelmed, ROS production increases, resulting in mitochondrial and hepatocyte damage, DAMP release, and 
amplification of inflammation. Exercise affects these pathways at multiple levels, as indicated. Of note, multiple other pathways are 
involved in the pathogenesis of NASH. As the effects of exercise have not been investigated on these pathways, they are not included 
in this diagram. AMPK, AMP-activated protein kinase; DAMP, damage-associated molecular pattern; FA, fatty acid; FFA, free fatty 
acids; HCC, hepatocellular carcinoma; HMGB1, high-mobility group box-1; HSC, hepatic stellate cell; IR, insulin resistance; MMIF, 
macrophage migration inhibitory factor; mtDNA, mitochondrial DNA; mTOR, mammalian target of rapamycin; PPARa, peroxisome 
proliferator-activated receptor-a; ROS, reactive oxygen species; SREBP-1, sterol regulatory element-binding protein 1.
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of ACC, resulting in its inactivity76,77. Epigenetic mecha-
nisms (e.g., reduction of DNA hypermethylation) have 
been proposed to be responsible for the beneficial effect 
of physical exercise on the metabolic pathways including 
de novo lipogenesis78.

EFFECTS ON FATTY ACID OXIDATION 
AND MITOCHONDRIA

The liver can neutralize metabolically and immunologi-
cally active FFA in three major pathways: esterification of 
FFA into triglycerides and sequestration into lipid droplets 
(steatosis), excretion in very-low-density lipoprotein, and 
fatty acid oxidation in hepatocyte mitochondria (b-oxida-
tion). b-Oxidation was found to be increased in human 
NASH, as measured by fasting serum b-hydroxybuturate 
levels79. However, structural defects to liver mitochondria, 
such as the loss of cristae, were observed simultaneously79, 
indicating that a compensatory increase in b-oxidation 
may lead to mitochondrial damage and dysfunction in the 
long term. Indeed, in other studies, a positive correlation 
between NASH severity and reduced liver mitochondrial 
performance was observed80,81. Haus et al. measured fatty 
acid oxidation in PBMCs before and after a 7-day aerobic 
exercise course in 17 NAFLD patients. The participants 
were found to have a significant increase in fatty acid oxi-
dation, as measured with indirect calorimetry50.

In rodent studies, it was confirmed that running 
improves liver mitochondrial function and increased 

palmitate oxidation in freshly excised livers, concomi-
tantly with an increase in hepatic carnitine palmitoyl-
CoA transferase 1 (CPT-1)76,77,82,83, an enzyme necessary 
for transport of FA from the cytosol across the mitochon-
drial membrane (Fig. 3). Other investigators confirmed 
these findings and demonstrated that exercise increased 
CPT-2, acyl-coenzyme A dehydrogenase (ACD), and 
trifunctional enzyme, which are rate-limiting enzymes 
in fatty acid oxidation in the liver64. In mice, Gonçalves 
et al. demonstrated with electron microscopy that exer-
cise caused an improvement in abnormal liver mito-
chondria84. Exercise studies in rodents have also shown 
an improvement in mitochondrial respiration84 and an 
increase in cytochrome C76, indicating that, in addition 
to b-oxidation, downstream oxidative phosphorylation 
is enhanced by aerobic exercise. Peroxisome prolifera-
tor-activated receptor-a (PPARa) regulates the expres-
sion of enzymes responsible for mitochondrial fatty 
acid oxidation and thereby stimulates b-oxidation in the 
liver (Fig. 3). Several studies have shown that exercise 
increases PPARa73,77, which may indicate that exercise, 
in part, acts along a mechanism similar to the action of 
thiazolidinediones9.

However, when b-oxidation becomes overwhelmed 
by the abundance of FFA and mitochondria sustain dam-
age, reactive oxygen species (ROS) are formed and create 
double bonds in polyunsaturated FA (lipid peroxidation), 
resulting in toxic metabolites capable of causing fur-
ther mitochondrial damage (Fig. 3). In the pathology of 
human NASH, multiple markers of this oxidative stress 

Figure 2. Effects of physical exercise on hepatic fatty acid 
synthesis. In NASH, the increase in glucose delivery to the 
liver results in increased FFA synthesis. Exercise reduces the 
expression of various enzymes that mediate the conversion of 
acetyl-coA to FFA. An increase in AMPK by exercise stimu-
lates the phosphorylation and therefore inactivation of these 
enzymes (here depicted for ACC) and of SREBP-1, which is a 
main transcription factor for expression of ACC, FAS, elongase, 
and SCD1. ACC, acetyl coenzyme A carboxylase; AMPK; FAS, 
fatty acid synthase; FFA; SCD1, stearoyl coenzyme A desatu-
rase 1; SREBP-1. P denotes phosphorylation.

Figure 3. Effects of NASH and exercise on mitochondrial 
function. When b-oxidation fails to appropriately neutralize 
the access in FFA, ROS formation leads to lipid peroxidation 
products, which in return cause more mitochondrial dam-
age. Physical exercise stimulates PPARa, which has benefi-
cial effects on multiple aspects of b-oxidation and therefore 
improves mitochondrial quality and function. ACD, acyl coen-
zyme A dehydrogenase; CPT1/2, carnitine palmitoyl coenzyme 
A transferase 1/2; FFA; MDA, malondialdehyde; PPARa; TFE, 
trifunctional enzyme.
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have been shown to be elevated85–89. Multiple clinical 
trials have shown that exercise reduces ROS forma-
tion by various methodologies. The studies by Oh et al. 
revealed that 12-week exercise programs significantly 
reduced serum levels of the thiobarbituric acid-reactive 
substances that reflect the levels of ROS production and 
lipid peroxidation60,90,91. This was corroborated by a trial 
that established 7 days of aerobic exercise was sufficient 
to significantly reduce the ROS levels in PBMCs during 
an oral glucose challenge in 17 NASH patients, measured 
using chemiluminescence50. In rats, Hu et al. measured 
improved serum levels of the lipid peroxidation marker 
malondialdehyde (MDA) after 8 weeks of treadmill exer-
cise. With mass spectrometry, they found carbonylation 
(indicative of oxidative damage) to eight mitochondrial 
proteins, which was improved by exercise92.

THE ROLE OF AMPK IN  
EXERCISE-MEDIATED IMPROVEMENT 

OF LIVER LIPID METABOLISM

When ATP consumption is increased during physical  
exercise, the formation of ADP and AMP is sensed by 
AMP-activated protein kinase (AMPK). AMPK shifts 
liver lipid metabolism away from FFA synthesis through 
phosphorylation (and thereby suppression) of ACC and 
FAS, and of SREBP-1 to reduce expression of these  
lipogenic enzymes (Fig. 2). In addition, AMPK increa-
ses fatty acid oxidation through activation of CPT-193. 
Several basic scientific studies have documented that 
exercise activates AMPK-regulated pathways of lipid 
metabolism in the liver. Treadmill exercise resulted in 
increased levels of phosphorylated AMPK and ACC in 
livers of mice77,94,95. Moon et al. showed that this effect 
can be mediated by macrophage migration inhibitory  
factor, a cytokine of which metabolic effects are increas-
ingly becoming known94 (Fig. 1).

EFFECTS ON HEPATOCYTE DAMAGE 
AND ACTIVATION OF INFLAMMATION

The activation of inflammation and the innate immune 
system, and the role of macrophages as predominant 
effector immune cells in NASH are well established96. 
Innate immune activation is thought to be a consequence 
of hepatocyte damage induced by the above-described 
toxic consequences of FFA. Indeed, elevations in ala-
nine aminotransferase (ALT) and aspartate aminotrans-
ferase (AST) as markers of hepatocyte damage positively 
correlate with NASH severity97. With cellular damage, 
the release of damage-associated molecular patterns 
(DAMPs) such as high-mobility group box-1 protein 
(HMGB1) and mitochondrial DNA can activate pattern 
recognition receptors on macrophages98,99, which are a 
major source of inflammatory cytokines leading to ampli-
fication of the inflammation.

In several human trials, various exercise regimens 
reduced the serum levels of ALT and AST43,100–107. In 
some studies, a direct correlation between reduced ROS 
and improvement in transaminase levels was found60. 
In a randomized trial comparing aerobic versus resis-
tance training, 12 weeks of aerobic exercise resulted 
in a greater reduction in ALT and AST than resistance 
training100. In a small study in 15 obese women who 
failed a lifestyle intervention program, it was found that 
24 weeks of a combination of voluntary and electri-
cally stimulated movement of the quadriceps and ham-
strings was also able to significantly lower ALT levels60. 
Contrarily, the meta-analysis of randomized trials by 
Keating et al. was unable to detect an effect of exercise 
on ALT, possibly because patients in most included tri-
als had baseline ALT levels that already fell within the 
normal range21.

In several studies, levels of serum cytokines and 
inflammatory markers (IL-6, IL-8, TNF-a, ferritin, CRP) 
were significantly reduced, concurrently with a decrease 
in liver transaminases51. In addition, Oh et al. demon-
strated that a high-intensity aerobic exercise program 
caused a reduction in TLR4, TLR5, CD11b, and CD14 
expression on PBMCs, indicating an improvement in 
innate immune activation. Among the high-intensity aer-
obic group, they reported an increase in nuclear respira-
tory factor 2 (nrf2), a transcription factor that inhibits the 
macrophage inflammatory response52.

We can infer from these trials that physical exercise, 
or even electrically stimulated exercise, has a benefi-
cial effect on hepatocellular damage and the consequent 
inflammatory activation in NAFLD patients.

EFFECTS ON PROGRESSION OF NASH 
TO FIBROSIS AND HCC

Besides the effects on the development of NASH, 
some studies have investigated the effects of exercise 
on downstream outcomes, such as fibrosis and progres-
sion to liver cancer. In rats with NASH, a treadmill run-
ning regimen reduced markers of fibrosis (collagen 1a1 
mRNA, a-smooth muscle actin, and fibrosis scores) 
through decreased activation of hepatic stellate cells, 
which activation by lipid peroxidation products is thought  
to be the cause of fibrosis in the pathobiology of NASH 
(Fig. 1)108.

In a mouse model of NASH that progresses to HCC, 
Piguet et al. demonstrated that exercise-induced AMPK 
decreased mammalian target of rapamycin (mTOR) signal-
ing, which reduced hepatocyte proliferation and tumor 
formation (Fig. 1)95. Although not in the setting of NASH, 
mice with diethylnitrosamine-induced primary liver can-
cer had a reduction in tumor burden when doing voluntary 
treadmill training, also indicating the beneficial effect of 
exercise on liver cancer progression109.
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CONCLUSIONS

From the available literature, it is evident that physi-
cal exercise has a beneficial effect on NAFLD. Various 
regimens of aerobic and resistance training have been 
shown to reduce hepatic fat content through improve-
ments in insulin resistance, liver fatty acid metabolism, 
liver mitochondrial function, and activation of inflam-
matory cascades. These data provide justification for the 
current guidelines that recommend an exercise regimen 
that fits with the patient’s individual abilities and prefer-
ences, in order to facilitate long-term compliance with a 
more active lifestyle14.
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