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The nervous system (NS) has a limited self-repair capability and adult neurogenesis is limited to certain regions
of the brain. This generates a great interest in using stem cells to repair the NS. Previous reports have shown
the differentiation of adipose tissue-derived mesenchymal stem cells (ASCs) in neuron-like cells when cultures
are enriched with growth factors participating in embryonic and adult neurogenesis. Therefore, it could be
thought that there exists a functional parallelism between neurogenesis and neuronal differentiation of ASCs.
For this reason, the goal of this work was to study the differential gene expression of Shh and BMP genetic
pathways involved in cell fate determination and proliferation. In this study we demonstrated that hASCs are
endowed with active Hedgehog and BMP signaling pathways through the expression of genes of both cascades
and that their expressions are downregulated after neuronal induction. This idea is in accordance with the facts
that Shh and BMP signaling is involved in the maintenance of cells with stem cells properties and that prolifera-
tion decreases during the process of differentiation. Furthermore, Noggin expression was detected in induced
hASCs whereas there was no expression in noninduced cells, which indicates that these cells are probably
adopting a neuronal fate because noggin diverts neural stem cells from glial to neuronal fate. We also detected
FM1-43 and synaptophisin staining, which is evidence of the presence of putative functional presynaptic termi-
nals, a neuron-specific property. These results could partially contribute to the elucidation of the molecular
mechanisms involved in neuronal differentiation of adult human nonneural tissues.
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INTRODUCTION led to investigate alternative cells with the ability to
differentiate to neuronal lineage.

Adipose tissue is derived from the mesodermalNeural tissue has long been regarded as incapable
of regeneration. Hence, the identification of cell pop- germ layer and contains a supportive stroma that can

be easily isolated (24,28). This stromal fraction con-ulations capable of neuronal differentiation has gen-
erated great interest (58,60). Stem cells from embry- sists of a heterogeneous mixture of cells, such as en-

dothelial cells, smooth muscle cells, pericytes, fibro-onic tissue as well as from adult brain can undergo
expansion and neuronal differentiation in vitro and in blasts, mast cells, and preadipocytes. In addition, this

fraction contains a multipotent adipose tissue-derivedvivo (5,19,20,49). However, the inaccessibility of
these stem cells limits their clinical utility and has mesenchymal stem cell (ASC) population (79). Hu-
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man ASCs (hASCs) have the capacity to differentiate Ids can act as dominant-negative regulators that inter-
fere with the transcriptional activities of proneuralin vitro into mesodermal and nonmesodermal lin-

eages, between them into neuron-like cells (2,65); proteins in neuronal progenitors (76).
Among the four members of Id family, Id1 seemsand in vivo may contribute to improvements in neu-

ronal functions (36). hASCs express genes across the to be specifically required for proliferation of neuro-
epithelial cells and for timing of neuronal differentia-three germ layers, thus supporting a differentiation

potential towards nonmesodermal lineages (9,37). tion in the embryonic stage (16,22,34,45,57). In mice,
Id1 is expressed in proliferating neural precursors inDecisions regarding self-renewal versus commit-

ment are based on microenvironmental cues, which the ventricular zone (VZ), but is not found in differ-
entiated cells at the early stages of embryogenesispredominantly use the Notch, Wnt, BMP, and Shh

signaling pathways (10,21,43,56). Understanding (14,18). Id2 is expressed by early newborn neurons
in the developing nervous system and continues to beeach step of differentiation and characterizing differ-

entiation phenotypes are the basis of stem cell engi- expressed in specific neurons throughout develop-
ment and adulthood in the mouse brain (54,68), sug-neering. Future stem cell research is likely to focus

on improving the ability to guide the differentiation gesting that Id2 may be involved in other cellular
processes besides proliferation. Id3 expression isof stem cells and to control their survival and prolif-

eration for clinical application. more widespread and apparent throughout embryo-
genesis; it is present in various regions of embryo,Sonic hedgehog (Shh) is an intercellular signaling

morphogen, which plays an important role in many including areas of the developing brain. Finally, Id4
transcripts are mainly detected in neuronal tissuesdevelopmental stages and stem cell regulation (31,50,

70). Recent studies have involved Shh in the prolifer- (61,68). Based on this evidence, it is clear that the Id
gene family plays a significant role in neural progeni-ation and cell fate specification of several stem cells

(1,8,10,39,56,77). It transduces its signal to cells in- tor cell proliferation and differentiation.
In general, in the mammalian nervous system, theteracting with the 12-transmembrane protein, Patched

(Ptc), that serves as a receptor for Shh (47). Smooth- expression of Id1 and Id3 is located in the less differ-
entiated neuroblasts, whereas Id2 and Id4 are ex-ened (Smo), a 7-transmembrane protein, is a signal

transducer that, in the absence of Shh, interacts with pressed in different sets of more mature presumptive
neurons. Specifically, Id2 and Id4 are expressed inPtc. This Smo–Ptc interaction represses Smo-signal-

ing activity, therefore also acting as a repressor of the presumptive interneurons and motor neurons, re-
spectively, during spinal cord development. These re-Shh signaling. Binding of Shh to its receptor Ptc re-

leases the repression exerted on Smo and transfers sults indicate that the expression of two subclasses of
the Id family (i.e., Id1, Id3 and Id2, Id4) may havethe signal activating transcription factors of the Gli

family, thus activating a number of downstream tar- different physiological consequences (i.e., the specifi-
cation of different differentiation states of neuronalgets of the Shh pathway. In mammals, Shh signaling

involves two Ptc receptors (Ptc1 and Ptc2) and at cells during development).
Our working hypothesis was that neuronal differ-least three Gli proteins (Gli1, Gli2, and Gli3) (23,30,

64). Gli1 is one of Shh target genes and has been entiation of adult mesenchymal stem cells could re-
create some of the molecular mechanisms involvedcharacterized as a reliable marker of Hedgehog sig-

naling activity (29,63). in neural stem cells differentiation. Therefore, the ob-
jective of the present work was to evaluate the differ-Noggin belongs to a class of polypeptides that bind

to bone morphogenetic proteins (BMPs) and conse- ential expression of some Shh and BMP signaling
genes involved in proliferation and differentiation ofquently prevents the activation of BMP receptors

(71). Signaling from BMP family instructs adult human adipose tissue mesenchymal stem cells to neu-
ron-like cells.NSCs to adopt a glial fate and Noggin diverts stem

cells from glial to neuronal fate. It was reported that
ectopic Noggin expression promoted neuronal differ-
entiation (44). MATERIALS AND METHODS

The main downstream target genes of BMP signal-
Cell Isolation and Culture

ing are the Id proteins. The Ids (inhibitors of DNA
binding) are members of the helix–loop–helix (HLH) After informed consent and approval of ethics

committee of research protocols from Hospital Ital-family, but they lack the basic DNA binding domain
(6,57). Heterodimerization of Ids with other bHLH iano de Buenos Aires, adipose tissue samples were

obtained during abdominal and mammary plastic sur-transcription factors results in active transport of such
complexes into the nucleus and in simultaneous inhi- geries of 23 healthy donors between 26 and 56 years

old. The adipose tissue was extensively washed withbition of their binding to DNA (12). Concomitantly,
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Hank’s balanced salt solution (HBSS, Sigma, Buenos monio)propyl ]-4-(4-dibutylaminostyryl)pyridinium
dibromide (FM1-43, Molecular Probes, Invitrogen)}Aires, Argentina) to remove blood and fibrous mate-

rial and vessels were carefully dissected and dis- in depolarizing extracellular solution (70 mM K+)
during and up to 90 s. After loading, the cells werecarded. The remaining tissue was finely minced and

digested with 0.1% of Collagenase Type I (Gibco, washed in low Ca2+ solution for 5–10 min. Dishes
were visualized under a fluorescence microscopeCalifornia, USA) for 45 min with gentle agitation.

Enzyme activity was neutralized with a twofold vol- (NIKON ECLIPSE E400).
ume of standard medium containing Dulbecco’s
modified Eagle medium (DMEM, Gibco) with 20% Immunocytochemistry
of fetal bovine serum (FBS, Gibco), 100 U/ml peni-

Noninduced and induced hASCs were fixed with
cillin, 100 µg/ml streptomycin, and 0.25 µg/ml am-

4% paraformaldehyde at room temperature. After
photericin (ATB, Gibco), and centrifuged for 12 min

blocking to prevent nonspecific antibody binding,
at 400 × g. The supernatant containing the lipid drop-

plates were incubated with primary antibodies at 4°C
lets was discarded. The stromal vascular fraction

overnight. Following a PBS washing, the plates were
(SVF) settled at the bottom was resuspended in stan-

incubated with avidin/biotin blocking kit with fluo-
dard medium and seeded in culture dishes (Nunc In-

rescein isothiocyanate (FITC) or Texas Red avidins
ternational, Roskilde, Denmark).

(1:50, 1:200, Vector Laboratories, Burlingame, CA,
SVF cultures were incubated at 37°C in a 5% CO2 USA) at room temperature during 1 h in order to la-

atmosphere. After 48 h, nonadherent cells were re-
bel the antibodies. In some samples, nuclei were

moved. When they reached 70–80% of confluence,
counterstained with Hoechst 33258 (Sigma).

adherent cells were trypsinized (0.25% at 37°C for
The primary antibodies used were anti-glial fibril-

5 min, Sigma), harvested, and washed with standard
lary acidic protein (1:200, GFAP, Chemicon Interna-

medium to remove trypsin and were then expanded
tional, Inc., Temecula, CA, USA), anti-neurofilament

in larger dishes. A homogenous cell population of
200 (1:100, NF-200, Chemicon), anti-βIII tubulin (1:

hASCs was obtained after 2 or 3 weeks of culture.
100, Chemicon), anti-nestin (1:200, Chemicon), anti-

Cells at early passages (3–5) in culture were used for
synaptophysin (1:25, Dako, Glostrap, Denmark), and

the experiments.
anti-neuronal nuclei (1:200, NeuN, Chemicon). Mono-
clonal antibodies against CD90 (1:10, Thy-1, Santa

Neuronal Differentiation
Cruz Biotechnology, Inc., Santa Cruz, CA, USA),
CD34 (1:20, Abcam, Cambridge, UK), CD45 (1:20,Neuronal differentiation of 12 samples was initi-

ated at passage 3–5 using a modification of previous Abcam), and Stro-1 (1:100, R&D System, Minneapo-
lis, MN, USA) were used to characterize hASCs. Allneuronal induction protocols (42,46,67,73,78). Briefly,

the cells were plated in dishes until they were sub- the conditions were maintained in negative controls,
except that the primary antibodies were eliminated.confluent. Preinduction was performed for 48 h after

discarding the medium, washing the cells, and adding Dishes were examined under the fluorescence mi-
croscope. For each marker, five random nonoverlap-new DMEM containing 20% FBS and 1 mM β-mer-

captoethanol (BME, Riedel, De Haën, Germany). ping fields (±60 hASCs per field) per dish were pho-
tographed. Data are reported as a percentage of totalThen, the preinduction medium was removed and the

induction medium was added to the culture. The cells expressing positive marker labeling among total
labeling cells. All assays were repeated in three to sixcomposition of induction medium was: DMEM with

100 µM butylated hydroxyanisole (BHA, Sigma), independent experiments.
10−6 M retinoic acid (RA, Sigma), 10 ng/ml epider-
mal growth factor (EGF, Invitrogen, Brazil), and 10 Quantitative Real-Time PCR
ng/ml basic fibroblast growth factor (bFGF, Invitro-

Quantification was performed using real-time PCR
gen). Cells were incubated in this medium during 14

to compare the levels of expression of Shh and BMP
days. The medium was changed every 3 days. The

signaling genes involved in proliferation and neu-
cells were monitored continually after neuronal in-

ronal differentiation. For this purpose between 6 and
duction and were lysed for RNA extraction or fixed

12 samples of induced and noninduced hASCs were
for immunostaining. One noninduced culture dish

analyzed.
was also analyzed with every experiment as a control.

Total RNA from hASCs before and 14 days after
neuronal induction was extracted using TRIzol Re-

Staining With Endocytotic Marker FM1-43
agent (Invitrogen) according to the manufacturer’s
recommendations. The purity and integrity of theTo visualize synaptic vesicle accumulations, cells

were loaded with 15 µM styryl dye {N-[3-(triethyla- extracted RNA were evaluated by optical density
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measurements (260:280 nm ratios) and by visual performed using the program Primer of Byostatistics
Version 5.0 (McGraw-Hill, 2002).observation of samples electrophoresed on agarose

(Biodynamics, Buenos Aires, Argentina) gels. Two
micrograms of each total RNA was treated with RQ1
RNase-free DNase (Promega, Madison, WI, USA) to RESULTS
eliminate possible contamination of genomic DNA.

hASCs CharacterizationOne microgram of treated RNA was used as template
in a 20-µl volume cDNA synthesis reaction. When plated, the SVF exhibited a heterogeneous

Primer sequences were designed using LightCycler cell population with different morphologies that in-
Probe Design Software 2.0 (Roche Applied Science, cluded spindle-shaped, large, flat, and small round
Mannheim, Germany) using gene sequences obtained cells. The spindle-shaped cells gradually became pre-
from the GeneBank database (Table 1). dominant with continued cell growth and division in

Quantitative real-time PCR was performed using culture (Fig. 1A–C). Immunocytochemistry analysis
SYBR Green (Invitrogen), Platinum Taq Polymerase of hASCs at passages 3–5 demonstrated that the cells
(Invitrogen), and LightCycler 2.0 Instrument (Roche were negative for CD34 and CD45, which are cell
Applied Science). The expression of human β-actin surface markers associated with hematopoietic cells.
was used to standardize gene expression levels. Each In contrast, 49.3 ± 0.2% of hASCs expressed CD90
sample was run four times. Control experiments with- and 40.8 ± 1.2% of the cells expressed Stro-1, which
out template cDNA revealed no nonspecific amplifi- are two typical markers of mesenchymal stem cells.
cation. When PCR results were negative, cDNAs There were also cells that coexpressed both markers
from human cell lines or tissues were run as positive (Fig. 1D–I). When cultured in lineage-specific differ-
controls in order to eliminate the possibility of false- entiation culture medium, hASCs could undergo os-
negative results. teogenic, adipogenic, and chondrogenic differentia-

To verify the identity of amplified DNAs, the size tion (data not shown).
of the PCR products were checked on agarose gel. Thus, we concluded that morphology, plasticity

and expression of the characteristic membrane mark-
ers were indicative of a mesenchymal stem cell popu-Statistical Analysis
lation.

All data are presented as mean ± error deviation.
The values obtained from the Real Time PCR were

Morphologic Changes After Neuronal Induction
analyzed with Relative Standard Curve method and
the error deviations were obtained according to the During preinduction hASCs experienced few

changes; the fibroblastic morphology was maintainedApplied Biosystems User Bulletin No. 2 (P/N 4303859).
Statistical comparison of the results obtained with in- but the cells became more elongated. After the neu-

ronal induction, the morphology of hASCs began toduced and noninduced hASCs was carried out ac-
cording to the Student’s t-test (to compare two treat- change within a few hours. The cells changed from

flat, elongated, spindle-shaped to round cell bodiesment groups). Differences were considered statistically
significant when p < 0.05. Statistical analysis was with several branching extensions and retractile char-

TABLE 1
PRIMERS USED FOR REAL-TIME PCR EXPERIMENTS

Annealing
Gene Genebank Forward Reverse Temp.

Gli1 NM_005269 GGAAGGAGTTCGTGTGCC CACTTGTGTGGCTTCTCGC 60°C
Gli2 NM_030381 CAACTGCCACTGGGAAGAC GTGGATGTGCTCGTTGTTG 59°C
Gli3 NM_000168 AGCAGGACCTCAGCAACAC TTGGCTTCTCTGCCTTGAC 59°C
Ptc NM_000264 TGGAGCAGATTTCCAAG TTTGAATGTAACAACCCAGT 58°C
Smo NM_005631 GTCCTCACTGTGGCAATCC CGCACGGTATCGGTAGTTC 59°C
Noggin NM_005450 TGTAAATATAGAGAACAAATGGAATGACT ACGGGATATTATAAAGAATAAATAGCAGAT 57°C
Id1 NM_181353.1 CTGCTCTACGACATGAACG CTCACCTTGCGGTTCTG 57°C
Id2 NM_002166.4 AACATGAACGACTGCTACT AGGATTTCCATCTTGCTCAC 58°C
Id3 NM_002167.3 CGACATGAACCACTGCTAC GGATTTCCACCTGGCTAAG 58°C
Id4 NM_001546.2 TGCTACCAAAGGACAAACTC TTCTCCCACTGTTGCCTA 58°C
β-Actin NM_001101 CCCTTGCCATCCTAAAAGC TGCTATCACCTCCCCTGTGT 57°C
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acteristics similar to those observed in cultured neu- in induced cells, which could probably indicate the
presence of functional presynaptic terminals. No la-ronal cells. After 12 h of neuronal induction, a mean

of 13% of hASCs displayed retraction of the cyto- beling was detected in noninduced cells (Fig. 3).
plasm towards the nucleus, forming compact cell
bodies with cytoplasmic extensions. The cell bodies Immunocytochemistry After Neuronal Induction
became increasingly spherical with multiple cell pro-

To characterize neuronal and glial differentiation,cesses (Fig. 2). Neuronal induction was carried out
hASCs were stained with a panel of markers againstfor 14 days. During this time the number of cells ex-
neuronal and glial cells before and after neuronal in-hibiting the neuronal phenotype increased to a mean
duction. Before exposure to neuronal induction me-level of 59.7 ± 2.5%.
dia, hASCs expressed high levels of nestin, a progen-
itor and glial marker. The nestin expression bySynaptic Vesicle Staining During
mesenchymal stem cells has been reported in concor-Neuronal Differentiation
dance with the acquisition of the ability to respond
to extrinsic signals and cues driving their neuronalTo test whether neuron-like cells develop synaptic

activity, cells differentiated during 14 days were differentiation (72). Control hASCs did not express
any other neuronal or glial marker examined.loaded with 15 µM FM1-43, which stains recycling

synaptic vesicles. Saturating staining was performed Following exposure to induction media, hASCs ex-
hibited immunocytochemical changes consistent withusing a depolarizing (70 mM K+) extracellular solu-

tion to stimulate synaptic vesicle cycling in the pres- neuronal lineage cells. At the end of the induction
treatment, hASCs stained brightly for nestin (100%),ence of FM1-43. We observed a punctuate labeling

Figure 1. hASCs morphology and characterization. Microscopic photographs of hASCs at passage 0 (A), 3 (B), and 5 (C) where the
fibroblast-like and spindle-shaped cell morphology is observed. CD90 expression in hASCs at passage 5 with a cytoplasmic localization (D,
E) and Stro-1 expression at the same stage with a perinuclear localization (G, H). There is coexpression of CD90 (Texas Red labeled, red)
and STRO1 (FITC labeled, green) in hASCs at passage 5 (F, I). Scale bar: 100 µm.
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Figure 2. Morphologic changes following neuronal induction of hASCs. Human ASCs grown under standard medium (A). hASCs incubated
during 48 h with preinduction medium (B, C). (D–F) During 14 days of neuronal differentiation, morphological changes were observed
such as cytoplasm retraction towards the nucleus and cells increasingly displayed neuronal traits of pyramidal, perikaryal appearances. Some
cells appeared to make contact with others. Scale bar: 100 µm.

GFAP (24.6 ± 2.5%), NF-200 (32.9 ± 5.1%), synap- time PCR, induced and noninduced hASCs gene ex-
pression profiles of the following factors were com-tophysin (42.1 ± 8.4%), as well as βIII-tubulin (29.4 ±

7.2%). Double staining of induced hASCs with nestin pared: sonic hedgehog transcription factors (Gli1,
Gli2, and Gli3) as well as its receptors (Ptc and Smo),and βIII-tubulin revealed cells that coexpressed both

markers (Fig. 4). In contrast, the expression of the BMP target genes (Id1, Id2, Id3, and Id4), and Nog-
gin (BMP signaling inhibitor).mature neuronal marker NeuN was not observed in

induced hASCs. Because nestin, βIII-tubulin, NF- The five genes of the sonic hedgehog signaling
pathway were found to be expressed in hASCs, sug-200, synaptophysin, and GFAP are neuronal-glial

markers, our data suggest that hASCs probably dif- gesting that these cells would be able to respond to
sonic hedgehog signaling from the environment.ferentiate into some neuron-like cells in vitro.
After neuronal differentiation, Gli1, Gli2, Gli3, and
Smo expression decreased significantly (p < 0.01),

Changes in hASCs Gene Expression
whereas only Ptc expression did not show significant
changes (Fig. 5). These results are consistent with theTo gain insight into the molecular mechanisms in-

volved in proliferation and neuronal differentiation, fact that Shh pathway is involved in the maintenance
of a pool of cells with stem cell properties in otherwe evaluated the expression before and 14 days after

of neuronal induction of Shh and BMP signaling tissues and that their expression is downregulated
after differentiation (40,73,79).genes known to have important roles during normal

nervous system development. Using quantitative real- One of the signaling pathways involved in commit-

Figure 3. FM1-43 staining. Fluorescence images of hASCs differentiated into neuron-like cells loaded with FM1-43. Note the punctuate
appearance of dye loading (A, B). Noninduced hASCs did not load with FM1-43 (C). Scale bar: 100 µm.
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Figure 4. Immunocytochemical analysis of neuronally induced and noninduced hASCs. βIII-tubulin expression in induced cells (A, B) and
noninduced hASCs (C). GFAP expression in induced cells (D, E) and noninduced cells (F). Induced hASCs were costained with βIII-tubulin
(FITC labeled, green) (G) and nestin (Texas Red labeled, red) (H). Merged image confirming coexpression of βIII-tubulin and nestin in the
same cells (I). Synaptophysin expression in induced (J, K) and noninduced hASCs (L). Scale bar: 100 µm.

ment and differentiation is the BMP pathway. In our reports where there was a deep reduction in Id1 pro-
tein in vitro when cells differentiated under treatmentexperiment, we found Noggin expression in hASCs

after neuronal differentiation, an antagonist of BMP, with serum and/or morphogens (55), a proneural gene
expansion and premature neuronal differentiationwhich was reported to inhibit BMP signaling promot-

ing neuronal differentiation (44). Noggin expression when Id1 expression was inhibited by siRNA (4), and
a significant inhibition of neuronal differentiationwas not detected in noninduced hASCs. Furthermore,

we analyzed Id expression before and after neuronal when Id1 was overexpressed (35). On the other hand,
an increase in Id4 expression after neuronal differen-differentiation and Id1, Id2, Id3, and Id4 expression

was found in noninduced hASCs. However, upon ex- tiation was detected, which is in accordance with the
fact that this gene is expressed in more mature pheno-posure of cultures to neuromorphogens, when the

cells stopped proliferating and started to differentiate types of neural cells (62,68). There were no signifi-
cant changes in Id2 and Id3 expression after treat-morphologically, a decrease in the Id1 expression

was detected. These results are similar to previous ment (Fig. 6).
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Figure 5. Relative gene expression of Sonic Hedgehog signaling pathway in hASCs treated with induction medium compared to noninduced
hASCs. Hedgehog signaling is downregulated during neuronal differentiation. *p < 0.05; **p < 0.01.

DISCUSSION selected by their capacity and rapid proliferation. We
demonstrated that these stromal cells are able to ex-
press mesenchymal stem cell markers, CD90 andCellular therapies are promising approaches not

only in the treatment of several neurological diseases Stro-1, as well as nestin, a marker of the first step in
the progression to neural lineage. We also observedsuch as Parkinson’s disease (33) and Huntington’s

disease (15), but also for spinal cord injury (27). One that these cells have the ability to differentiate into
multiple lineages, such as osteogenic, adipogenic,main problem concerns the origin and nature of the

cells to be used for such procedures. The ideal cell chondrogenic, and neurogenic, in accordance with
previous studies (2,3,17,25,26,38).should exhibit several key properties, including: (1)

a high level of proliferation in vitro, allowing the pro- Following the induction of neuronal differentia-
tion, hASCs revealed biologic and morphologic char-duction of a large number of cells from a minimal

amount of donor material, (2) a good control of this acteristics of neural lineages and an increased expres-
sion of neuron specific proteins, βIII-tubulin, NF-200,proliferative activity in vivo, and (32) a phenotypic

plasticity allowing the differentiation into appropriate and synaptophysin, and of neural progenitor markers,
GFAP and nestin. The critical epigenetic moleculesneuronal or glial phenotype.

Several recent reports suggest that adipose tissue in our chemically defined medium, which might con-
tribute to this differentiation, are probably bFGF andstem cells could be a nonembryonic or nonfetal

source of stem cells suitable for cell replacement RA, both of which are routinely used in the expan-
sion of mammalian neural crest stem cells (41,52,66).strategies in the treatment of CNS disorders (36,59).

In our study, hASCs were isolated from human ad- Basic FGF produces neurogenic, proliferative, and
patterning effects on adult CNS stem cells (11,13).ipose tissue using an adhesion procedure and were
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RA is a commonly used neural induction reagent in Ptc, Smo, Gli1, Gli2, Gli3, Noggin, Id1, Id2, Id3,
and Id4.vitro that enhances expression of markers of neural

crest (48,51). Shh, an important morphogen, is involved in a va-
riety of cellular processes during development andFurthermore, FM1-43 staining in hASCs was ob-

served after neuronal differentiation, which could disease, such as cell fate determination, proliferation,
differentiation, and survival. It has widely been stud-probably be some evidence of the presence of func-

tional presynaptic terminals because noninduced ied in the context of stem cells, with the expectation
that specific modulation of the signal may provide anhASCs lacked this staining. This dye allows the visu-

alization of the synaptic vesicle in living cells in real in vitro tool for stem cell expansion and manipulation
of lineage specific differentiation in the future. Thetime. We used the fluorescent dye FM1-43 because it

is employed to detect depolarization-induced synaptic main finding of the present work is that Shh signaling
represents an endogenous mechanism that regulatesvesicle recycling, which is a neuron-specific property

(7). This dye enters the differentiated neurons in the proliferation of cells with stem cells properties in the
adipose tissue, the hASCs. We demonstrated that hu-presence of a high extracellular concentration of KCl

when the synaptic vesicles are recycled back into the man ASCs are endowed with an active hedgehog sig-
naling. Shh receptors, Ptc and Smo, and the down-neurons after depolarization.

An understanding of the molecular regulation of stream transcription factors (Gli1, Gli2, and Gli3)
were expressed in hASCs during proliferation. How-such “mesenchymal-neural” transition may be very

important when considering the use of stem cells in ever, their expression is downregulated after neuronal
induction, in accordance with the fact that prolifera-the treatment of CNS disorders. To study some of

the pathways involved in this transition, we ana- tion decreases during the process of differentiation.
The decrease of Shh signaling could be associatedlyzed the gene expression of different factors like

Figure 6. Relative gene expression of Noggin and Id genes in hASCs treated with induction medium compared to noninduced hASCs. Id1
is downregulated during neuronal differentiation, whereas Id4 and Noggin are upregulated after morphogen treatment. *p < 0.05; **p < 0.01.
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with decreases in Gli1 expression. Indeed, Gli1 is the ever, after neuronal induction, the Id1 expression de-
creased significantly, in accordance with previous re-primary activator of hedgehog signaling and a decrease

of its expression in vivo and in vitro leads to a de- ports (4,55). Furthermore, we demonstrated that there
was a significant increase in Id4 expression after neu-creased signaling (63). These findings show that Shh is

a niche factor regulating the number of stem cells and ronal differentiation, which was associated with more
mature phenotypes of neural cells (69).they contribute to understand the mechanisms that mod-

ulate proliferation of stem cells. The controlled modula- Thus, distinct Id gene family members may have
different functional roles that may be dependent ontion of Shh signaling in vitro and in vivo is likely to

lead to the development of protocols to increase the their expression levels and on the coexpression of
certain Id-associated bHLH transcription factors. Fornumber of cells with stem cell properties in an effort to

ameliorate the effects of degenerative diseases. this reason, it would be necessary to study some
bHLH factors to associate this Id expression patternBoth human and murine Ids are known to be the

main targets of cell differentiation signaling (53,74, with neuronal differentiation or cell proliferation.
The endogenous BMP antagonist Noggin is a poten-75). They have emerged as key regulatory intermedi-

ates for coordinating differentiation-linked gene ex- tial molecule that controls neural commitment. It ap-
pears to support neurogenesis by binding to endoge-pression with cell cycle control in response to extra-

cellular signaling. There exists a paradox between the nous BMP and consequently preventing activation of
BMP receptors, which would otherwise induce glio-similar functional properties of different Id proteins

in promoting cell growth and arresting differentiation genesis (44). The results of this study showed that only
hASCs expressed Noggin after neuronal differentiationand their apparent disparate mechanisms of action.

During embryogenesis, an abundance of Id1, Id2, and according to the acquisition of a neuronal commitment.
In conclusion, nestin expression by hASCs shouldId3 transcripts was observed in VZ of mouse and rat

brain. The expression of different Id genes fits well be regarded as a first step in the progression to neural
lineage. After neuronal induction, we probably reachedwith the chronology of neuronal development: Id1

and Id3 expression is found in mitotically active and the first step of neuronal differentiation, owing to the
presence of neuronal markers and the increase in tran-less differentiated neuroblasts. Their expression di-

minishes at later stages when mitotically active neu- scription factors expression typical of neural lineage
cells. The differentiation of hASCs into excitable neu-roblasts are no longer present. On the other hand, Id2

and Id4 are expressed first in presumptive neuroblasts ronal-like cells might require further steps of neuronal
maturation process. It is, however, encouraging to no-and later in specific presumptive postmitotic neurons:

Id4 mRNAs first appear in the motor neurons and tice that our procedure can induce the formation of
possible synaptic vesicles, which is a specific-neuronlater in the region where the sensory neurons reside.

Id2 expression is first detected where the putative property in functional presynaptic terminals. A better
knowledge of the molecular mechanisms responsiblesubset of motor neurons or/and interneurons are lo-

cated. Thus, both Id2 and Id4 mark specific groups for the regulation of the neuronal differentiation of
hASCs is still needed before considering ASCs as anof neurons from very early stages, whereas Id1 and

Id3 expression is present in most mitotically active appropriate cellular material to be used for cell replace-
ment therapies in CNS disorders.neuroblasts (68). Our data, which confirm that the

main function of Id1 is strictly connected with regula-
tion of cellular differentiation, do not differ from data
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