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REVIEW

An Integrated Strategy for the Optimization
of Microarray Data Interpretation
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The completion of a microarray experiment represents just a starting point toward understanding the biology of
interest. A follow-up strategy is needed to fully elucidate the functional significance of microarray-derived
measurements of differential expression. Given the fact that no single approach can fully unravel the fundamental
biology that is typically quite complex, the follow-up strategy must be integrated at multiple levels encompassing
bioinformatics, genomics, and proteomics. In this review, we discuss an integrative approach, which can be used
to prioritize microarray-derived candidate genes, define their functions, and place them in the context of the
biological system being studied.
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THE first glance at the results of a microarray study the differential expression using an alternative plat-
form, such as real-time quantitative (q) PCR. The se-can be very exciting. However, upon further reflec-

tion, confusion can set in because the differential ex- lection of which representative genes to independently
confirm should be determined by the experimentalpression of some genes is contradictory to existing

knowledge, while other candidate genes have no ob- aims. For the microarray experiments that are de-
signed to test a specific hypothesis, it may be possi-vious biological relevance or function. Consequently,

many investigators subjectively choose a few genes ble to simply confirm the genes that are felt to be
biologically relevant. For the “fishing” type of micro-for further experimentation, while the majority of data,

which can contain a wealth of information, is by- array experiments, one may need to select a group of
genes to confirm the experimental system as a whole.passed for lack of a clear analytical strategy. This

review was motivated by such a scenario and offers In the selection of such genes, one should consider
both the signal intensity of individual measurementsa step-by-step guide to help investigators follow up

on their microarray data. We do not intend to sup- and the change between experimental groups. This is
necessary because experimental noise is a function ofplant the fundamental approach of microarray data

analysis for which an ever-growing toolbox is avail- signal intensity, with higher signal intensities having
greater reliability (37). Selected genes should be rep-able. The interested reader is referred to several re-

cent reviews (1,22,31). resentative of different signal intensities and fold changes
(23). For example, one may select a group of genes
with high signal intensities that are differentially ex-

SELECTION OF CANDIDATE GENES
pressed by �50% (1.5-fold change), a group with

FOR INDEPENDENT CONFIRMATION
medium signal intensities differentially expressed by
�100% (2.0-fold change), and a group with low sig-After completion of a microarray experiment and

gene expression analysis, the first step is to confirm nal intensities with that have on average a 3.5-fold
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change between experimental groups. By considering
both signal intensity and differential expression when
confirming data, one can get a general guideline as
to how reliably data perform within specified ranges
of signal intensities.

IDENTIFICATION OF SIGNIFICANT
BIOLOGICAL THEMES CONTAINED IN THE
DIFFERENTIALLY EXPRESSED GENE LIST

After independent confirmation of differential ex-
pression, the next step is to identify significant bio-
logical themes in which differentially expressed genes
are contained. This analysis will provide groupings

Figure 1. Integrating gene expression data from different sources.of genes based on function (rather than by expression
pattern, such as revealed by cluster analysis when
data are initially examined) and can permit a more

experiments. This integration can start by searching
focused analysis in the subsequent steps.

relevant published material contained within the com-
Investigators traditionally annotate differentially

prehensive NCBI Entrez site (http://www.ncbi.nlm
expressed genes using Internet-based databases or

.nih.gov/entrez) in conjunction with gene expression
manual literature searches. In addition to being time

data browsing, query, and retrieval through the NCBI
consuming, such an approach cannot systematically

Gene Expression Omnibus (http://www.ncbi.nlm.nih
identify the most significant biological themes with

.gov/geo), the EBI ArrayExpress (http://www.ebi.ac
statistical backing. To overcome these problems, sev-

.uk/arrayexpress), and/or the Human and Mouse
eral software packages have been developed to un-

Gene Expression Database BODYMAP (http://body
cover significant biological themes from microarray

map.ims.u-tokyo.ac.jp).
data, including EASE (18), MAPPFinder (11), GoMiner

The merits of considering one’s data in the context
(38), and homogeneity analysis (10). Among these

of other publicly available data have been demon-
software programs, EASE is particularly user friendly

strated in several recent examples. By integrating
and functionally versatile. It can automate the process

gene expression data from cancer cell lines and hu-
of biological theme determination for lists of genes

man tumors, Lamb et al. (21) uncovered a cyclin-
and also serve as a customizable gateway to online

dependent kinase-independent mechanism of cyclin
analysis tools. Such analyses also can provide a guide

D1 function. In another experiment, tumor gene ex-
to objectively select a few genes, if necessary, from

pression data combined from in vitro and in vivo
the most significant biological themes for follow-up

experiments revealed differential gene expression
studies. However, it should be emphasized that gene

patterns (9). Genes upregulated in lung adenocarci-
annotation has not been completed and using such

noma and glioblastoma cell lines grown in vitro were
an approach to eliminate genes that are differentially

associated with increased cell division and metabo-
expressed should be made cautiously at this point.

lism; in contrast, those upregulated in the same cells
lines grown in vivo were predominantly involved in
extracellular matrix formation, cell adhesion, and

INTEGRATING GENE EXPRESSION
neovascularization. This indicates that gene expres-

DATA FROM OTHER SOURCES
sion patterns can be modulated by extrinsic factors
and extrapolation of in vitro data to reveal what oc-There is an increasing emphasis on the use of di-

verse sets of data that, while being derived from dif- curs in vivo must be made with caution.
It is important to point out that microarray dataferent platforms, species, tissues, time points, envi-

ronment, etc., address a similar biological question generated using different experimental procedures,
platforms, and image processing parameters may show(Fig. 1). This integration may identify: 1) common

changes that are fundamental to the biology in ques- considerable variations (6,32). This poses a technical
problem for integrating microarray data from differ-tion; 2) unique changes that are specific to the system

of interest; 3) novel changes that are not identifiable ent sources. To facilitate data integration while at the
same time taking into account this confounding issue,with single microarray analysis, including small (such

as 1.2- to 1.5-fold), but consistent changes that rely the statistical method of meta-analysis has been de-
veloped to identify the intersection of multiple geneon the power of data pooled from multiple microarray
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expression signatures from a diverse collection of mi- flanked by microsatellite markers D3Mit341 and
D3Mit232. The use of the NCBI syntenic map cancroarray data set (28). Choi et al. (5) have recently

reported a novel concept of combining effect size (a find sequence homology between genomes. The pres-
ence of a syntenically confirmed homologue in an-term given to a family of indices that measure the

magnitude of treatment effect in a study) to obtain an other genome indicates that these might be ortholo-
gous genes. Finally, other structural and functionaloverall estimate of the average effect size. The au-

thors applied this method to liver cancer gene expres- information can be predicted using the Ensembl data-
base, including the full-length genomic and cDNAsion profiles from nine independent data sets that in-

volved cDNA and oligonucleotide arrays on various sequences, structural and functional domains of the
gene, and its protein family. By integrating all thisplatforms. By assimilating data from these various

sources, the authors identified altered transcripts for available information through genome databases, tra-
ditional ESTs can be functionally characterized. An-growth hormone receptor, erythropoietin receptor,

and tissue factor pathway inhibitor-2 that had not other useful resource is Affymetrix NetAffx (https://
www.affymetrix .com /analysis /netaffx / index .affx),been reported in individual gene expression studies

(6). In another study using a similar approach, which can be used to accomplish many of the func-
tions described above when examining AffymetrixRhodes et al. (29) uncovered a common transcription

profile that was universally activated in most cancer probe sets based upon ESTs.
An example of genome database-mediated charac-types relative to normal tissues.

terization of differentially expressed ESTs is illus-
trated in a study of the human ciliary body (12). The
authors used NCBI BLAST search and sequenceINTEGRATING EXPRESSED SEQUENCE
mapping techniques to successfully classify 284 dif-TAGS/TRANSCRIBED SEQUENCES
ferentially expressed ESTs into 17 functional groups.INTO GENOME DATABASES
By analyzing their relationships, they were able to
define the expression of five major groups of knownA microarray-derived candidate gene list can con-

tain a substantial number of expressed sequence tags/ genes, from which novel physiological functions of
the ciliary body in normal and in disease states weretranscribed sequences (to be referred to collectively

as ESTs for simplicity); this is true even when the uncovered, as well as the identification of novel can-
didate genes in ocular diseases. More recently, Vittlatest generation of arrays is used (e.g., Affymetrix

Human Genome 133 Plus 2.0, Mouse Genome 430 et al. (33) successfully used EST alignments, synteny,
gene expression, and verification of Ensembl genes2.0 and Rat Genome 230 2.0 oligonucleotide arrays).

Unlike fully annotated genes, there can be little to no to identify candidate disease genes on rat chromo-
some 1q43-54.functional information for these ESTs. However, the

availability of new sequence data and analytical tools
derived from the various genome databases has opened
new opportunities to explore the potential identity INTEGRATING GENE EXPRESSION
and/or function of ESTs in the following sequential DATA WITH QUANTITATIVE TRAIT
manner. First, ESTs can be BLAST searched against LOCI INFORMATION
all entries in the last available release of the nonre-
dundant database containing GenBank, EMBL, DDBJ, Quantitative trait loci (QTL) mapping is a genetic

technique to identify chromosomal regions that har-and PDB sequences using the blastn program ac-
cessed through NCBI’s BLAST services on the In- bor the gene(s) regulating the trait of interest. Up un-

til now, finding candidate genes from QTL regionsternet (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi).
Identification of high homology with a known gene has been difficult because of the rather large genomic

regions that define a QTL, which harbored genes ofmay shed light onto the potential function of the EST.
Secondly, ESTs can be mapped by their accession unknown number (ranging from tens to hundreds)

and composition. As genome projects have becomenumber onto a specific chromosomal position using
the NCBI or Ensembl (http://www.ensembl.org/) ge- complete, QTL data have become increasingly infor-

mative. Now, the genes/ESTs within a given QTLnome databases (3,20). As example, consider the mouse
EST identified by its accession number, BM200602. By can be retrieved simply by knowing the flanking

markers or starting and ending base pair positions ofinputting this number into Ensembl and searching
“all species for EST with this accession number,” that QTL using the tool EnsMart (http://www.ensembl

.org/Multi/martview). EnsMart is a batch data/sequencethere is one match in the mouse EST index. By click-
ing on Contigview, this EST is then localized to chro- retrieval tool that allows users to generate lists of bio-

logical objects (e.g., genes, SNPs) by specifying ge-mosome 3 between 90409457 and 90449921 bps,
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nomic regions from data held in the Ensembl data- musculus or Rattus_norvegius for human, mouse, and
rat data, respectively) has been developed for com-base. If one is working with rat QTLs, genes can be

directly exported by clicking “Limit to QTL region” bined visualization of gene expression and QTL data
(13). This software displays these data globally onbox and selecting the QTL name from the EnsMart

site. Subsequently, overlapping genes between those the karyotype, assisting the researcher with an over-
view of the distribution of the differentially expresseddifferentially expressed genes in a microarray experi-

ment and those residing in the QTL(s) accounting for genes and their particular occurrence within QTLs as-
sociated with the desired trait.the trait in question can be identified (Fig. 2). Those

genes contained within the QTL that are differentially The application of this integration has been at-
tempted in a Marek’s disease resistance model (8,24)expressed represent genes highly relevant for further

study. It is important to note that such analyses re- and has also recently been illustrated in an alcohol
preference experiment in rat (34). In the latter study,quire knowledge of QTLs derived from existing re-

search. However, several QTL databases are available the authors chose an alcohol preference QTL from
the literature, with a lod score of 9.2 and a peakfor retrieving relevant QTL information, including hu-

man, mouse, and rat QTL resources (http://qtl.pzr marker D4Rat34. Forty-two genes/transcribed se-
quences are localized within this QTL region. Several.uni-rostock.de/) and the Gramene QTL Database for

plants (http://www.gramene.org/qtl/). The Expres- transcripts are relatively enriched in the nucleus ac-
cumbens, the region in the brain that is felt to controlsionview software tool (http://ensembl.pzr.uni-rostock

.de/*/expressionview, where * is Homo_sapiens, Mus_ ethanol preference. One of those near D4Rat34 is

Figure 2. Integrating QTL data with gene expression data. Using the flanking markers of the QTL, all genes localized in the QTL can be
retrieved through the Ensembl database. Genes in common between those identified as differentially expressed in a microarray experiment
and those within the QTL region can be identified. These are the most likely to be relevant to the biological system in study.
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corticotropin releasing factor (CRF) receptor 2. Pre- sion/function (16). 3) Translational control is an im-
portant cellular process that is regulated by a specificvious studies have shown that CRF plays a role in

ethanol intake; rats preferring ethanol had differing group of genes (17). For example, the differential ex-
pression of polypeptide chain initiation factor eIF2responses to CRF than those that did not prefer etha-

nol. Taken together, these data suggested that CRF could change the rate of translation of many mRNAs
into proteins, which may be important in the regula-receptor 2 is a strong candidate gene for ethanol pref-

erence, thereby demonstrating the value of combining tion of cell growth or death (7). Given the distinct
regulation of RNA and protein levels, integrating datagene expression data and QTL information.
of the transcriptome and proteome will provide more
complete pictures of gene function. A successful ex-
ample of such integration was a study of lung tumorsINTEGRATING GENE EXPRESSION
in which mRNA and protein profiles of tumors wereDATA WITH OTHER GENOMIC
obtained from 86 newly diagnosed patients, includingAND PROTEOMIC DATA
67 with early stage and 19 with advanced stage lung
adenocarcinoma. The combined analyses of proteinIn and of themselves, changes in gene expression

are not wholly sufficient to understand gene function and mRNA data revealed that 11 components of the
glycolysis pathway were associated with poor sur-(15). To fully understand the cause and functional

significance of the observed change, genomic and vival. Among these candidates, overexpression of
both phosphoglycerate kinase 1 mRNA and proteinproteomic datasets should be integrated.

Most chromosomal alterations, including chromo- was associated with reduced patient survival; this
finding was confirmed by independent immunohisto-somal gains, losses, deletions, or insertions, ultimately

affect gene expression. Thus, combining microarray chemical studies with tissue microarrays (2,4). Thus,
this example demonstrates the value of integratingand genomic data can facilitate the identification of

the candidate genes within the region and also reveal data of both RNA and protein expression; in this par-
ticular case, its utility was in the identification ofwhen the alterations affect phenotype. The benefits

of this integration has been stressed in a recent re- more reliable biomarkers to predict the outcome of
patients with early stage lung cancer.view (14) and illustrated in several studies (19,36).

Pollack et al. (26) performed parallel microarray pro-
filing and genome-wide comparative genomic hy-
bridization (CGH) analysis in a series of primary hu- INTEGRATING RNAi TECHNOLOGY
man breast tumors and revealed that DNA copy number FOR HIGH-THROUGHPUT
influenced gene expression across a wide range of FUNCTIONAL VALIDATION
DNA copy number alterations (deletion, low-, mid-,
and high-level amplification); on average, a 2.0-fold After integrating other transcriptomic, genomic,

and proteomic data, the number of candidate geneschange in DNA copy number was associated with a
corresponding 1.5-fold change in mRNA levels. The has been substantially reduced and a priority has been

assigned to the remaining genes. The next step is toSKY/M-FISH and CGH is a comprehensive database
from NCBI (http://www.ncbi.nlm.nih.gov/sky/skyweb functionally characterize this latter group of genes

such as through the use of RNA interference (RNAi)..cgi) for chromosomal aberrations and DNA copy
number changes in tumor genomes, which is an ex- RNAi is a contemporary approach to silence specific

genes by way of posttranscriptional gene targeting.cellent resource to place gene expression data in such
a context. Despite its being a relatively new approach, RNAi

already has been widely used for studying gene func-The rationale for integrating proteomic data is
based on several facts. 1) Alteration of transcript tion as well as for identifying and validating new

drug targets. Following-up microarray studies withquantities is not always linked to alteration of protein
quantities in a linear fashion; at best, only half of RNAi experiments can be ideal to perform large-

scale functional screening.those transcriptionally changed genes will have their
proteins altered in the same direction (30). In general, The power of such an approach has been demon-

strated in the identification and validation of genesthe correlation is good between structural proteins
and their corresponding RNAs, but not as good be- involved in the pathogenesis of colorectal cancer

(35). In this study, cDNA microarray analysis identi-tween nonstructural proteins and their RNAs (25). 2)
Numerous protein activity alterations are not re- fied 574 upregulated genes in colon tumors compared

to normal tissue. After qRT-PCR confirmation, RNAiflected by changes of their RNA levels, such as post-
translational modifications and the mutations that do was used to disrupt expression of a selected number

of these genes in a colon tumor cell line, HCT116,not affect RNA expression but change protein expres-
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Figure 3. Outline of the eight-step integrated strategy to follow-up on data from a microarray study.

which had comparable gene expression patterns to ogies can also facilitate the dissection of causative
relationships among upregulated genes, often referredmany of the patient tumors. Disruption of the expres-

sion of one of these genes, surviving, which is a po- as a systems biology approach. This application has
been illustrated in a mesothelioma study (27). Affy-tent inhibitor of apoptosis, significantly reduced tu-

mor growth both in in vitro and in vivo models. metrix oligonucleotide microarray analyses of crocid-
olite asbestos-exposed rat pleural mesothelial (RPM)The combination of microarray and RNAi technol-
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cells, as well as human mesotheliomas, identified the mediated gain-of-function, virus-mediated gene deliv-
ery, or topical application approaches can be applied.early response proto-oncogene, fra-1, as highly upregu-

lated in both instances. In subsequent experiments, These approaches are traditional and many examples
of successful applications are available in the literature.silencing of fra-1 translation reduced cd44 and c-met

expression, thereby connecting fra-1 with genes gov-
erning cell motility and invasion in mesothelioma and
supporting the blockade of fra-1 signaling pathways SUMMARY
as therapy for malignant mesothelioma.

No single approach that originates from a micro-
array experiment can reveal all there is to know about
the function of a given set of genes. Here we have

IN VIVO CONFIRMATION
presented an eight-step strategy to prioritize micro-
array-derived candidate genes and functionally evalu-For the most part, microarray studies are designed

to uncover transcriptional events occurring in a par- ate these in vitro and in vivo. Such a strategy can
be performed in parallel and experimentally validatedticular organism even if performed in in vitro or ex

vivo settings. As such, to definitely assign function (Fig. 3). It starts with independent confirmation of
microarray results, emphasizes bioinformatic, geno-to a candidate gene, in vivo confirmation is a final

step. Depending on the nature of the experiments, gene mic, and proteomic data integration, and finishes with
functional validation.knock-out-mediated loss-of-function, gene knock-in-

REFERENCES

1. Aittokallio, T.; Kurki, M.; Nevalainen, O.; Nikula, T.; D. S.; Brichory, F. M.; Rouillard, J. M.; Omenn, G. S.;
Hanash, S. Profiling of pathway-specific changes inWest, A.; Lahesmaa, R. Computational strategies for

analyzing data in gene expression microarray experi- gene expression following growth of human cancer
cell lines transplanted into mice. Genome Biol. 4:R46;ments. J. Bioinform. Comput. Biol. 1:541–586; 2003.

2. Beer, D. G.; Kardia, S. L.; Huang, C. C.; Giordano, 2003.
10. Cui, Y.; Zhou, M.; Wong, W. H. Integrated analysis ofT. J.; Levin, A. M.; Misek, D. E.; Lin, L.; Chen, G.;

Gharib, T. G.; Thomas, D. G.; Lizyness, M. L.; Kuick, microarray data and gene function information. OMICS
8:106–117; 2004.R.; Hayasaka, S.; Taylor, J. M.; Iannettoni, M. D.;

Orringer, M. B.; Hanash, S. Gene-expression profiles 11. Doniger, S. W.; Salomonis, N.; Dahlquist, K. D.;
Vranizan, K.; Lawlor, S. C.; Conklin, B. R. MAPPpredict survival of patients with lung adenocarcinoma.

Nat. Med. 8:816–824; 2002. Finder: Using Gene Ontology and Gen-MAPP to cre-
ate a global gene-expression profile from microarray3. Birney, E. Ensembl: A genome infrastructure. Cold

Spring Harb. Symp. Quant. Biol. 68:213–215; 2002. data. Genome Biol. 4:R7; 2003.
12. Escribano, J.; Coca-Prados, M. Bioinformatics and re-4. Chen, G.; Gharib, T. G.; Wang, H.; Huang, C. C.;

Kuick, R.; Thomas, D. G.; Shedden, K. A.; Misek, analysis of subtracted expressed sequence tags from
the human ciliary body: Identification of novel biologi-D. E.; Taylor, J. M.; Giordano, T. J.; Kardia, S. L.;

Iannettoni, M. D.; Yee, J.; Hogg, P. J.; Orringer, cal functions. Mol. Vis. 8:315–332; 2002.
13. Fischer, G.; Ibrahim, S. M.; Brockmann, G. A.;M. B.; Hanash, S. M.; Beer, D. G. Protein profiles as-

sociated with survival in lung adenocarcinoma. Proc. Pahnke, J.; Bartocci, E.; Thiesen, H. J.; Serrano-
Fernandez, P.; Moller, S. Expressionview: Visualiza-Natl. Acad. Sci. USA 100:13537–13542; 2003.

5. Choi, J. K.; Yu, U.; Kim, S.; Yoo, O. J. Combining tion of quantitative trait loci and gene-expression data
in Ensembl. Genome Biol. 4:R77; 2003.multiple microarray studies and modeling interstudy

variation. Bioinformatics 19(Suppl. 1):i84–90; 2003. 14. Garnis, C.; Buys, T. P.; Lam, W. L. Genetic alteration
and gene expression modulation during cancer progres-6. Choi, J. K.; Choi, J. Y.; Kim, D. G.; Choi, D. W.; Kim,

B. Y.; Lee, K. H.; Yeom, Y. I.; Yoo, H. S.; Yoo, sion. Mol. Cancer 3:9–32; 2004.
15. Ge, H.; Walhout, A. J.; Vidal, M. Integrating ‘omic’O. J.; Kim, S. Integrative analysis of multiple gene ex-

pression profiles applied to liver cancer study. FEBS information: A bridge between genomics and systems
biology. Trends Genet. 19:551–560; 2003.Lett. 565:93–100; 2004.

7. Clemens, M. J. Targets and mechanisms for the regula- 16. Hanash, S. Disease proteomics. Nature 422:226–232;
2003.tion of translation in malignant transformation. Onco-

gene 23:3180–3188; 2004. 17. Hanash, S. Integrated global profiling of cancer. Nat.
Rev. Cancer 4:638–644; 2004.8. Cox, L. A.; Birnbaum, S.; VandeBerg, J. L. Identifica-

tion of candidate genes regulating HDL cholesterol us- 18. Hosack, D. A.; Dennis, Jr., G.; Sherman, B. T.; Lane,
H. C.; Lempicki, R. A. Identifying biological themesing a chromosomal region expression array. Genome

Res.12:1693–702; 2002. within lists of genes with EASE. Genome Biol. 4:R70;
2003.9. Creighton, C.; Kuick, R.; Misek, D. E.; Rickman,



230 LI AND QUIGG

19. Hyman, E.; Kauraniemi, P.; Hautaniemi, S.; Wolf, M.; microarray data identifies common transcriptional pro-
files of neoplastic transformation and progression.Mousses, S.; Rozenblum, E.; Ringner, M.; Sauter, G.;

Monni, O.; Elkahloun, A.; Kallioniemi, O. P.; Kallio- Proc. Natl. Acad. Sci. USA 101:9309–9314; 2004.
30. Shoemaker, D. D.; Linsley, P. S. Recent developmentsniemi, A. Impact of DNA amplification on gene ex-

pression patterns in breast cancer. Cancer Res. 62: in DNA microarrays. Curr. Opin. Microbiol. 5:334–
337; 2002.6240–6245; 2002.

20. Kasprzyk, A.; Keefe, D.; Smedley, D.; London, D.; 31. Slonim, D. K. From patterns to pathways: gene expres-
sion data analysis comes of age. Nat. Genet. 32(Suppl.):Spooner, W.; Melsopp, C.; Hammond, M.; Rocca-

Serra, P.; Cox, T.; Birney, E. EnsMart: A generic sys- 502–508; 2002.
32. Tan, P. K.; Downey, T. J.; Spitznagel, Jr., E. L.; Xu,tem for fast and flexible access to biological data. Genome

Res. 14:160–169; 2004. P.; Fu, D.; Dimitrov, D. S.; Lempicki, R. A.; Raaka,
B. M.; Cam, M. C. Evaluation of gene expression mea-21. Lamb, J.; Ramaswamy, S.; Ford, H. L.; Contreras, B.;

Martinez, R. V.; Kittrell, F. S.; Zahnow, C. A.; Patter- surements from commercial microarray platforms. Nu-
cleic Acids Res. 31:5676–5684; 2003.son, N.; Golub, T. R.; Ewen, M. E. A mechanism of

cyclin D1 action encoded in the patterns of gene ex- 33. Vitt, U.; Gietzen, D.; Stevens, K.; Wingrove, J.; Becha,
S.; Bulloch, S.; Burrill, J.; Chawla, N.; Chien, J.;pression in human cancer. Cell 114:323–334; 2003.

22. Leach, M. Gene expression informatics. Methods Mol. Crawford, M.; Ison, C.; Kearney, L.; Kwong, M.; Park,
J.; Policky, J.; Weiler, M.; White, R.; Xu, Y.; Daniels,Biol. 258:153–165; 2004.

23. Li, X.; Kim, J.; Zhou, J.; Gu, W.; Quigg, R. J. Use S.; Jacob, H.; Jensen-Seaman, M. I.; Lazar, J.; Stuve,
L.; Schmidt, J. Identification of candidate diseaseof signal-dependent thresholds to determine significant

changes in microarray data analyses. Genet. Mol. Biol. genes by EST alignments, synteny, and expression and
verification of Ensembl genes on rat chromosome(in press).

24. Liu, H. C.; Cheng, H. H.; Tirunagaru, V.; Sofer, L.; 1q43-54. Genome Res. 14:640–650; 2004.
34. Walker, J. R.; Su, A. I.; Self, D. W.; Hogenesch, J. B.;Burnside, J. A strategy to identify positional candidate

genes conferring Marek’s disease resistance by inte- Lapp, H.; Maier, R.; Hoyer, D.; Bilbe, G. Applications
of a rat multiple tissue gene expression data set. Ge-grating DNA microarrays and genetic mapping. Anim.

Genet. 32:351–359; 2001. nome Res. 14:742–749; 2004.
35. Williams, N. S.; Gaynor, R. B.; Scoggin, S.; Verma,25. Nishizuka, S.; Charboneau, L.; Young, L.; Major, S.;

Reinhold, W. C.; Waltham, M.; Kouros-Mehr, H.; U.; Gokaslan, T.; Simmang, C.; Fleming, J.; Tavana,
D.; Frenkel, E.; Becerra, C. Identification and valida-Bussey, K. J.; Lee, J. K.; Espina, V.; Munson, P. J.;

Petricoin, 3rd., E.; Liotta, L. A.; Weinstein, J. N. Pro- tion of genes involved in the pathogenesis of colorectal
cancer using cDNA microarrays and RNA interfer-teomic profiling of the NCI-60 cancer cell lines using

new high-density reverse-phase lysate microarrays. ence. Clin. Cancer Res. 9:931–946; 2003.
36. Wolf, M.; Mousses, S.; Hautaniemi, S.; Karhu, R.;Proc. Natl. Acad. Sci. USA 100:14229–14234; 2003.

26. Pollack, J. R.; Sorlie, T.; Perou, C. M.; Rees, C. A.; Huusko, P.; Allinen, M.; Elkahloun, A.; Monni, O.;
Chen, Y.; Kallioniemi, A.; Kallioniemi, O. P. High-Jeffrey, S. S.; Lonning, P. E.; Tibshirani, R.; Botstein,

D.; Borresen-Dale, A. L.; Brown, P. O. Microarray resolution analysis of gene copy number alterations in
human prostate cancer using CGH on cDNA micro-analysis reveals a major direct role of DNA copy num-

ber alteration in the transcriptional program of human arrays: impact of copy number on gene expression.
Neoplasia 6:240–247; 2004.breast tumors. Proc. Natl. Acad. Sci. USA 99:12963–

12968; 2002. 37. Yang, I. V.; Chen, E.; Hasseman, J. P.; Liang, W.;
Frank, B. C.; Wang, S.; Sharov, V.; Saeed, A. I.;27. Ramos-Nino, M. E.; Scapoli, L.; Martinelli, M.; Land,

S.; Mossman, B. T. Microarray analysis and RNA si- White, J.; Li, J.; Lee, N. H.; Yeatman, T. J.; Quacken-
bush, J. Within the fold: Assessing differential expres-lencing link fra-1 to cd44 and c-met expression in me-

sothelioma. Cancer Res. 63:3539–3545; 2003. sion measures and reproducibility in microarray assays.
Genome Biol. 3:research0062; 2003.28. Rhodes, D. R.; Barrette, T. R.; Rubin, M. A.; Ghosh,

D.; Chinnaiyan, A. M. Meta-analysis of microarrays: 38. Zeeberg, B. R.; Feng, W.; Wang, G.; Wang, M. D.;
Fojo, A. T.; Sunshine, M.; Narasimhan, S.; Kane,Interstudy validation of gene expression profiles re-

veals pathway dysregulation in prostate cancer. Cancer D. W.; Reinhold, W. C.; Lababidi, S.; Bussey, K. J.;
Riss, J.; Barrett, J. C.; Weinstein, J. N. GoMiner: ARes. 62:4427–4433; 2002.

29. Rhodes, D. R.; Yu, J.; Shanker, K.; Deshpande, N.; resource for biological interpretation of genomic and
proteomic data. Genome Biol. 4:R28; 2003.Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.;

Chinnaiyan, A. M. Large-scale meta-analysis of cancer


