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Abstract

Background and objectives: Clinical unmet need in managing nonalcoholic fatty liver disease (NAFLD), a common liver dis-
order affecting 25-30% of American adults is to develop noninvasive and robust biomarkers.

Methods: We re-measured liver AC by placing a region of interest (ROI, 3 cm tall and 3 cm wide) at 4.5 cm, 6 cm, and 7.5 cm from
the skin and a large ROI (6.0 cm tall and 7.3 cm wide) on pre-recorded ATI images from 117 participants screened for NAFLD. The
difference in AC value at variable ROI depths was tested using one-way ANOVA (analysis of variance). Diagnostic performances
of AC at variable depths in determining hepatic steatosis were examined by area under receiver operating characteristic curve
(AUC) using MRI-proton density fat fraction (MRI-PDFF) as reference and were compared using paired-sample Z-test.

Results: Based on MRI-PDFF, 117 livers were divided to 27 normal livers (MRI-PDFF < 5%) or 90 steatotic livers (MRI-PDFF 2
5%). Differences in AUC and AC value at variable depths and size were statistically significant (p < 0.01). The best performance
for determining hepatic steatosis was the AC measured at 6 cm from the skin (AUC = 0.92). Sources of errors in performing ATI
included reverberation, blank color region, and acoustic shadowing within the measurement ROI.

Conclusions: ROI depth significantly influences liver AC estimation. The best ROI depth to measure liver AC in patients with

BMI > 30 may be at a depth of 6 cm from the skin. Technical considerations should be taken in performing liver ATIL.

Introduction

The prevalence of nonalcoholic fatty liver disease (NAFLD) has seen
a significant increase worldwide, with a 10% increase in a recent
5-year period.! NAFLD is now estimated to affect 25% of the gen-
eral population, making it the most common chronic liver disorder in
the world.2 Moreover, there have been strong correlations between
NAFLD and other metabolic syndromes such as diabetes mellitus

Keywords: Attenuation coefficient; Liver; Magnetic resonance imaging-proton den-
sity fat fraction; Nonalcoholic fatty liver disease; Ultrasound.

Abbreviations: AC, attenuation coefficient; ANOVA, one-way analysis of variance;
ATI, ultrasound attenuation imaging; AUC, area under receiver operating character-
istic curve; CI, Confidence Interval; MRI, magnetic resonance imaging; MRI-PDFF,
magnetic resonance imaging-based proton density fat fraction; NAFLD, nonalcohlic
fatty liver disease; NASH, nonalcoholic steatohepatitis; ROC, receiver operating
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and obesity, cardiovascular disease, and chronic kidney disease re-
ported.>* Therefore, NAFLD is an ever-increasing healthcare con-
cern in which early detection can result in better clinical outcomes.
Hepatic steatosis, defined as an accumulation of lipids within the
liver parenchyma (>5%), can cause liver tissue injury. This dam-
age begins with inflammation that results in liver scarring, which
ultimately develops fibrosis in the liver. If left untreated, progres-
sion of fibrosis can lead to cirrhosis, which significantly increases
the risk for developing liver failure and hepatocellular carcinoma.’
Early stages of NAFLD are reversible and can be managed with
lifestyle changes and medications, however, once progression is
made to later stages, there are no approved treatments other than
liver transplantation.® The current gold standard in the diagnosis
of NAFLD is liver biopsy, which is highly efficacious for diagno-
sis throughout all stages of NAFLD, specifically in determining
nonalcoholic steatohepatitis (NASH).” The liver biopsy, as with
any invasive procedure, has the associated risks of pain, infection,
bleeding, and unintended comorbidities that are significant; in ad-
dition to variation in tissue sampling and interpretation.?
Alternatively, there are non-invasive imaging modalities available
for assessing NAFLD including computed tomography (CT), mag-
netic resonance imaging (MRI), serologic testing, and ultrasound. CT
has shown to be an effective measure in assessing more advanced liv-

© 2024 The Author(s). This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), which
permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided. “This article has been published
in Journal of Translational Gastroenterology at https://doi.org/10.14218/JTG.2023.00047 and can also be viewed on the Journal’s website
at https://www.xiahepublishing.com/journal/jtg”.
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er disease but is insufficient in detecting earlier stages of steatosis and
fibrosis. There is also the additional concern of radiation exposure to
the patient.” Serological markers are available to assess inflamma-
tion and fibrosis developed in NAFLD without radiation exposure.
However, these markers are not sensitive to stage hepatic steatosis.'?

The current preferred imaging modality in the diagnosis of
NAFLD is magnetic resonance imaging-based proton density fat
fraction (MRI-PDFF). This technique is done by utilizing the mul-
ti-echo Dixon method, which discriminates between water and fat
proton using the chemical inclusion and exclusion method.!! Fur-
thermore, MRI-PDFF has been proven to be more sensitive than
histology-determined steatosis grading in quantifying fat content
in the liver.!> As such, MRI-PDFF has become a leading non-in-
vasive imaging technique in managing NAFLD.!3 However, the
limitations of MRI include high cost, contraindications (claustro-
phobia), and limited test access in rural areas.

Ultrasonography remains the most commonly used imaging mo-
dality to assess hepatic steatosis. This can be attributed to its high
diagnostic utility, low cost, ability to be perform at bedside, wide
availability, and overall patient tolerability."* However, underesti-
mation of hepatic steatosis in individuals with <20% liver adiposity
using conventional B-mode ultrasound criteria was reported.!3

More recently, innovations in quantitative ultrasound biomark-
ers including two-dimensional attenuation imaging (ATI) have
been made that allow for assessing hepatic steatosis with a widely
available, cost-efficient, radiation free, and robust technique. ATI
assesses the degree of ultrasound energy loss in a localized region
of interest (ROI) on B-mode imaging. As reported, ultrasound
attenuation coefficients (AC, dB/cm/MHz) assessed by ATI was
closely correlated to MRI-PDFF in quantifying hepatic steatosis
and intra- and inter-operator reliability in performing ATI was
g00d.'%17 Yet, the diagnostic scanning protocol of ATI in screening
for NAFLD has not been standardized, and technical considera-
tions in performing ATI need to be addressed.

We aimed to assess the variation in the value and diagnostic
performance of AC measured at different depths using MRI-PDFF
as the reference standard and elaborate on sources of errors in per-
forming liver ATI to screen for NAFLD.

Materials and methods

The study was conducted through remeasuring AC values on pre-
recorded ATI images in 117 adult participants who met inclusion
criteria for screening for suspected NAFLD (age >18years old;
suspicious or known NAFLD; alcohol intake <20g/day; no history
of autoimmune, viral, drug, radiation, or metastasis related liver
diseases, tolerant ultrasound and MRI scans) and underwent the
ultrasound and MRI scans within 30 days each other in a previous
pilot study. The initial study received ethical approval from the
Institutional Review Board of Rocky Vista University (IRB#2019-
0009) and was performed in accordance with the Declaration of
Helsinki (as revised in 2013). All participants provided written
informed consent upon enrollment. Additionally, the manuscript
was prepared in accordance with Standards for Reporting of Di-
agnostic Accuracy Studies (STARD) study reporting guidelines.
Initially, five liver ATI images were acquired for each participant
using a commercial ultrasound scanner equipped with a curvilinear
transducer (PVI-475BX, 1.8-6.2 MHz, Aplio 1800, Canon Medi-
cal Systems USA, Tustin, CA, USA) after fasting 68 hours. Liver
ACs were measured approximately 2.0 cm below the liver capsule.
All ATI images were stored on the hard drive of the scanner. A
senior operator with more than 30 years of experience in abdomi-
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nal ultrasound and 4 years of experience in ATI performed all ini-
tial scans using manufacturer recommended machine settings and
scanning protocol.!” The liver MRI-PDFF were initially performed
using a multipoint Dixon technique (Iterative decomposition of
water and fat with echo asymmetry and least squares estimation
(IDEAL) Intelligent Quotient (IQ), General Electric Healthcare
(GE) Healthcare). The methods of MRI-PDFF acquisition used in
the initial study included: noncontrast; breath-hold sequence; 3D
complex gradient echo; low flip angle; 6 echo-imaging for T2*
decay correction. The average of 9 MRI-PDFF values of the liver
was used for analysis.!® Hepatic steatosis was graded SO or >S1
based on MRI-PDFF value <5% or >5%.13 All liver images were
interpreted by three radiologists who had more than 8 years of ex-
perience of clinical abdominal/liver imaging in the initial study.

Ultrasound attenuation imaging

Re-measurements of the liver AC were performed by two junior op-
erators (C.A. and J.D.) who had training in abdominal ultrasound (2
years) and received instruction on how to measure attenuation coef-
ficient of the liver. These two junior operators were blinded to the
initial study results of liver AC, MRI-PDFF, and clinical information
of the participants. Using the image review function on the ultra-
sound scanner (Aplio i800, Canon Medical Systems USA), each of
5 ATI images recorded for each liver in the initial scans was selected
and displayed on the screen (one on one). The initial AC value and
measurement ROI were automatically deleted once the AC meas-
urement function was activated. As a result, a new AC value can be
measured by manually placing a region of interest (ROI) in color-
coded ATT image. The site of ROI placement for measuring liver
AC was confirmed by both operators. The protocol for re-measuring
AC of the liver with variable size at different depths was standard-
ized: using depth scales on the ultrasound image as a guidance, the
operator manually placed a trapezoid ROI (3.0 c¢m tall by 3.0 cm
wide) in the liver at the depth of 4.5 cm (the distance from the skin
to the center of ROI, Fig. 1a), 6 cm (Fig. 1b), 7.5 cm (Fig. 1c), and
a large ROI (6.5 cm tall, upper border wide 4 cm, and lower border
wide 7.3 cm) that encompassed the entire color-coded region on the
ATl image (Fig. 1d). Five ATI images per participant were reviewed.
The average of 5 AC values at each depth in the liver were used for
analysis. The quality of each AC measurement was evaluated by the
R? (coefficient of determination) value showed on the screen (Fig.
la). AC measurements with R? < 0.90 were categorized as meas-
urement failure. All measurements were then logged in a Microsoft
Excel spread sheet for analysis.

Statistical Analysis

The Shapiro—Wilk test was used to test the normal distribution of
quantitative variables. When quantitative variables were normally
distributed, all variables including the distance from the skin to the
liver capsule, body mass index (BMI), age of the participants, AC
value measured at different ROI depth and size were expressed as
mean and standard deviation (SD). Differences in age, BMI, and the
distance from the skin to the liver capsule were examined using two-
tailed #-test. The difference in mean AC value measured at variable
ROI depth and size was tested using one-way analysis of variance
(ANOVA). The diagnostic performance of AC measured at the dif-
ferent depths were examined using receiver operating characteristic
(ROC) curve and displayed with area under ROC (AUC). The area
difference under the ROC curves was compared using two- tailed
paired-sample Z-test. The measurement failure rate (%) = (number
of measurements with RZ < 0.90 / total number of measurements)
at each ROI depth was also calculated. A p value less than 0.05 was
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Fig. 1. Ultrasound attenuation coefficient (AC, dB/cm/MHz) is measured using two sizes of the region of interest (ROI). A ROI (3 cm tall x 3 cm wide) is
placed at the depths of 4.5 cm (the distance from the skin to the center of ROI (a), 6 cm (b), and 7.5 cm (c) in the liver. A larger ROI (d), 6.5 cm tall, 4 cm top
border, and 7.3 cm of bottom border) is also used to measure AC of the liver. The AC value is 1.06 dB/cm/MHz, 0.86 dB/cm/MHz, 0.66 dB/cm/MHz, and
0.85 dB/cm/MHz measured at the depths of 4.5 cm, 6 cm, 7.5 cm, and with a large ROI, respectively. AC, attenuation coefficient; ROI, region of interest.

considered statistically significant. Statistical analysis was conduct-
ed using the commercial software SPSS (Version 28.0, IBM).

Results

Total of 585 AC values (5 AC measurements for each liver) at each
ROI depth were measured from 117 participants (49 men and 68
women, mean age 55 years, age range 20-81 years). Based on

MRI-PDFF, 117 participants were divided to normal liver (MRI-
PDFF< 5%, n = 27) group or steatotic liver (MRI-PDFF > 5%, n
= 90) group (Table 1) (Fig. 2). The difference in the age between
the two groups was significant. Differences in BMI or the distance
between the skin and the liver capsule between the two groups
were not significant (p > 0.05, Table 1).

AC measured 0.88 + 0.21 dB/cm/MHz, 0.73 + 0.13 dB/cm/
MHz, 0.57 £ 0.13 dB/cm/MHz, and 0.72 £+ 0.13 dB/cm/MHz at

Table 1. Demographic information and AC values in 117 participants with and without NAFLD

Parameter Normal liver NAFLD P*
Participants (M/F) 27 (13/14) 90 (36/54)

Age (Y) 60+ 21 51+13 0.04
Body mass index (kg/cm?) 30.02+7.51 32.34+5.43 0.28
Distance from the skin to liver capsule (cm) 3.91 +0.55 4.08 +£0.53 0.46
MRI-PDFF (%) 3.38+0.96 14.55+6.73 <0.001
AC measured with large ROI 0.66 +0.12 0.74 £0.22 <0.01
AC measured at 4.5 cm (dB/cm/MHz) 0.79+0.24 0.92+0.21 <0.01
AC measured at 6 cm (dB/cm/MHz) 0.63+0.10 0.75+0.12 <0.001
AC measured at 7.5 cm (dB/cm/MHz) 0.52+0.13 0.57+0.15 0.10

*Pis based on two-tailed t-test. AC, attenuation coefficient (dB/cm/MHz); MRI-PDFF, magnetic resonance imaging-based proton density fat fraction (%); NAFLD, nonalcoholic fatty

liver disease based on MRI-PDFF 2 5%.
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(n=117)

Potentially Eligible Participants

Excluded (n = 0)
- Age<18(n=0)

- No suspicion of NAFLD
< (n=0)

Y

- Alcohol Intake >20g/day

Participants Available for

(n=0)
- History of other liver
pathology (n = 0)

Review
= - MRI Scan after >30 days
(n=117)
(n=0)
A 4
Participants Sorted by MRI-
PDFF Value
(n=117)
MRI-PDFF < 5% » - MRI-PDFF 2 5%
(n=27) (n=90)

Fig. 2. Flow and organization of participants through our study. MRI-PDFF, magnetic resonance imaging-based proton density fat fraction; NAFLD, nonal-

cohlic fatty liver disease.

ROI depth of 4.5 cm, 6.0 cm, 7.5 cm from the skin and with the
large ROI, respectively (Table 2). The difference in AC value
measured at variable ROI depth and with different ROI size was
significant (p < 0.001). The ATI quality represented by R? for AC
estimation at different depths was listed in Table 2.

The diagnostic performance of AC measured at the different
depths was listed in Table 2 and displayed in Figure 3. AC meas-
ured at 6 cm showed the highest AUC (AUC = 0.92). There is a

Table 2. Analysis of AC measured at variable depth in screening for NAFLD

significant difference in the area under ROC curves between AC
value measured at 6 cm and those values measured at 4.5 cm, 7.5
cm, and large ROI (p <0.01, Table 3). Common sources of pitfalls
in performing ATI are discussed in Figure 4.

Discussion

We have observed significant differences in liver AC value, as well

Parameter ROl at 4.5 cm ROl at 6 cm ROl at 7.5 cm Large ROI ANOVA (p)
AC (dB/cm/MHz) 0.88+0.21 0.73+0.13 0.57+0.13 0.72+0.13 <0.001
ATI quality (R?) 0.88 £ 0.09 0.95 £ 0.06 0.85+0.11 0.91 £ 0.06 <0.001

Failure rate (%) 13/585* (2.2%) 3/585 (0.5%)

ROC (SO vs = S1)

Area under ROC 0.720 0.918

(95% Cl) (0.593-0.847) (0.854-0.982)
Cutoff value 0.85 0.68
Sensitivity 0.66 0.92
Specificity 0.78 0.82

68/585 (12%) 7/585 (1.2%)

0.611 0.683
(0.501-0.721) (0.563-0.803)
0.60 0.60

0.57 0.90

0.93 0.41

AC, attenuation coefficient; ANOVA, one-way analysis of variance; ATI, attenuation imaging; Cl, Confidence Interval; NAFLD, nonalcoholic fatty liver disease; ROI, region of interest;
ROC, Receiver Operating Characteristic. failure rate (%) = (number of cases with R < 0.90 / total number of measurement at each depth); Area under ROC (95% Cl), area under
the receiver operating characteristic curve (95% confidence interval); cutoff value is based on the maximum Kolmogorov-Smirnov (K-S) statistics and the largest one is reported;
ROC (SO vs > S1), ROC of attenuation coefficient (AC) for determining > mild hepatic steatosis; SO, MRI-PDFF < 5%; >S1, MRI-PDFF > 5%; 585* values = 5 AC measurements/at each

depth/per case x 117 cases.
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ROC Curve
1.0 Source of
the Curve
~— Reference line
0.8 — AC at4.5 cm
~— AC at 6.0 cm
—— AC at 7.5 cm
> —— AC with large ROI
= 0.6
=
n
o
o 04
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0
1 - Specificity

Fig. 3. The diagnostic performance of liver attenuation coefficient (AC, dB/cm/MHz) measured at different depths and sizes of the region of interest is an-
alyzed using the area under receiver operating characteristic curve (AUC). AUC of AC measured at the depth of 4.5 cm (green curve), 6.0 cm (purple curve),
7.5 cm from the skin (orange curve), and with the large ROI (brown curve) in determining mild hepatic steatosis (251, MRI-PDFF 2 5%) is 0.72, 0.92, 0.61, and
0.68, respectively. MRI-PDFF, magnetic resonance imaging-based proton density fat fraction; ROC, receiver operating characteristic; ROI, region of interest.

as in ATI quality, and diagnostic performance (AUC) for determin-
ing NAFLD among those measured at variable ROI depth and size.
Importantly, re-measuring the AC value of the liver on the pre-re-
corded ATI images stored in the ultrasound scanner hard drive is an
ideal method that allows radiologists to remeasure AC in different
ROI location and correct technical errors in the AC measurement.
As such, the accuracy of interpreting ATI images to assess hepatic
steatosis can be improved without a requirement of re-scanning
(callback) the patient.

In the study, the best ROI depth for measuring liver AC is at 6
cm from the skin (Fig. 1b) resulting in the highest diagnostic per-
formance of AC to determine > mild hepatic steatosis, ATI qual-
ity, and lowest failure rate compared with AC values measured at
depths of 4.5 cm, 7.5 cm, and large ROI. The ROI depth at 4.5 cm
seemed to be too close to the liver capsule to avoid the dark orange
color area produced by high noise or reverberation artifact (Fig.

Table 3. Comparison the AUC of AC in determining hepatic steatosis

4a, b) in some patients. The ROI depth at 7.5 cm was often too
deep from the skin to exclude the dark blue area (weak echo signal,
Fig. 4¢) due to less sound penetration,!® which yielded the poor
ATI quality, low diagnostic performance, and high failure rate. The
utilization of a large ROI is able to assess tissue attenuation in rela-
tive larger region of liver parenchyma (6.5 cm x 7.3 cm vs. 3 cm
x 3 ¢cm). However, using a large ROI to measure liver AC magni-
fies technical challenges to place such a large ROI in a small liver
(such as a cirrhotic liver) and avoid prominent hepatic vessels (e.g.
dilatation of the hepatic veins in congestive heart failure or portal
vein in significant portal hypertension). Further, AC measured at
the depth of 7.5 failed to distinguish steatotic livers from normal
livers as the difference in AC value between normal and steatotic
livers was not significant (p = 0.10, Table 1).

Ultrasound attenuation-based fat quantification technique relies
on the assessment of the energy loss of the acoustic signals while

Paired-sample area difference under the ROC curves

Asymptotic 95% Confidence interval

Test result pair(s) z Sig. (2-tail)? AUC difference std. error difference? Lower bound Upper bound
4.5cm:6cm -3.622 0.000 -0.198 0.309 -0.305 -0.091
45cm:7.5cm 1.715 0.086 0.109 0.343 -0.016 0.233

4.5 cm: large ROI 1.125 0.261 0.037 0.345 -0.027 0.101
6cm:7.5cm 5.202 0.000 0.307 0.296 0.191 0.423

6 cm: large ROI 4.479 0.000 0.235 0.303 0.132 0.338

7.5 cm: large ROI -1.586 0.113 -0.072 0.335 -0.161 0.017

AC, attenuation coefficient; AUC, area under register operating characteristic curve; ROI, region of interest. AUC comparison* is to test the area difference under the ROC curves
using a two-tailed paired-sample Z-test; Sig, significance (p value); 4.5 cm, 6 cm, and 7.5 cm, the distance from the skin to the center of the region of interest for measuring liver
attenuation coefficient (AC). Large ROI, the size of region of interest (6.5 cm x 7.3 cm) for measuring liver AC.
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Liver capsule

0.87 dBiemlaHz ( R*2 0.67 )

Fig. 4. Technical errors in measuring liver attenuation coefficient (AC). Common technical errors in performing liver ultrasound attenuation imaging (ATI)
are dark orange area (white arrow, a), the liver capsule (b), the region with blank color at the depth of >10 c¢m (c, the white arrow points R < 0.90), and
acoustic shadowing (white arrows, d) included in the measurement ROI. In addition, placing measurement ROl out of the center of the ultrasound attenua-
tion imaging (ATI) image and/or sound beam (white arrow) to liver capsule (yellow solid line) off 90 degrees (e) may also maximize scattering sound energy

to various directions resulting in measurement errors.

travelling through the tissue.?’ The distance the sound beam trav-
els, the scanning frequency, and the property of the tissue evaluat-
ed effect the ultrasound signal that returns to the transducer.!%2? As
reported, an AC value reflects the degree of acoustic attenuation
produced by fat content in the liver and the liver AC estimation is
depth dependent.?! Therefore, it is important to place the ROI at a
standardized depth to minimize intra- and inter-observer variation
in performing ATI and technical errors among follow up scans for
monitoring hepatic steatosis.

Best practices for ATI (Canon Medical Systems) measurement
and reporting are still evolving. Besides manufacturer’s recom-

mendation, there is no standardized consensus available to guide
performing ATI of the liver.? It is important to standardize pre-
scan preparation (fasting 6—8 hours), machine settings (scanning
frequency), scanning protocols (breath-holding maneuver, inter-
costal approach), and operator training for performing liver ATI.
Further, some technical considerations should be taken when at-
tempting to optimize the efficacy and utility of ATI in the diagnosis
and monitoring of hepatic steatosis. There are sources of errors and
pitfalls in performing ATI of the liver noted in the study.
1. The region below the liver capsule appearing dark orange
color on ATI is produced by ultrasound reverberation artifact
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(Fig. 4a). Therefore, dark-orange color below the liver capsule

should be excluded from ROI for measuring liver AC.?2

2. The liver capsule should be excluded from the measurement
ROI (Fig. 4b).

3. The posterior region with dark blue (Fig. 4c) or blank color
should be avoided from measurement ROI.23

4. Acoustic shadowing behind the ribs and/or lung (Fig. 4d) should
be avoided from the measurement ROI.

5. The propagation direction of the ultrasound beam is not perpen-
dicular to the liver capsule. Angling of the liver capsule (Fig.
4e) may cause stronger sound beam reflection and refraction
once the angle between sound beam and the liver capsule is off
90 degrees,'® which may affect AC estimation.

This study has several limitations. First, liver biopsy was not
available as the reference to assess the accuracy of AC in quanti-
fying hepatic steatosis. We employed MRI-PDFF as the reference
standard, which has been used as an acceptable non-invasive al-
ternative measure for quantifying fat content in the liver.'®>* Sec-
ond, only one senior operator (J.G.) performed all the ultrasound
scans and interobserver variability was not tested in this study,
however, good to excellent reproducibility was demonstrated in a
training session prior to the study.!” Third, our study included a
large number of participants with obesity (54% participants with
BMI > 30 kg/cm?; 90% participants with BMI >25 kg/cm?). Obe-
sity can significantly alter the placement of ROI within the liver
parenchyma due to varying amounts of subcutaneous adipose tis-
sue. Therefore, the recommended placement of ROI at a depth of
6 cm from skin surface may be suitable for patients with BMI > 30
based on our results. However, the ROI placement for estimating
liver AC should be adjusted according to the level of comorbid obe-
sity and the thickness of the subcutaneous adipose tissue. As such,
measurement failure rate at the measurement depth of 7.5 cm was
higher than at depths of 4.5 cm and 6.0 cm. Additionally, the place-
ment of ROI for estimating liver AC should be adjusted according
to varying levels of subcutaneous adipose tissue, especially in thin
patients with NAFLD. Fourth, we did not analyze confounding fac-
tors, such as liver inflammation and fibrosis that may affect liver
AC measurement because of the lack of biopsy pathology as arefer-
ence. Fifth, we only measured liver AC at the depths of 4.5 cm, 6.0
cm, and 7.5 cm. However, AC measured at the other depths (such
as 6.5 cm, 7.0 cm) may be more appropriate than the introduced
protocol for individual participant based on his/her body habitus.
Sixth, the sample size of the study was small and patient popula-
tion utilized in this study demonstrated a significant difference in
age of participants between the NAFLD and normal liver groups. A
low inverse correlation between the age and liver MRI-PDFF was
observed (Pearson correlation r = —0.18, p = 0.08), which is con-
sistent with a previously reported inverse correlation between the
age and patients with NAFLD in the general population.?’ Thus, an
age matched study in populations with and without NAFLD is war-
ranted. Lastly, the ultrasound scanner hardware and software used
in the study were designed by a single ultrasound vendor. The vari-
ation in measuring liver attenuation coefficient by using ultrasound
scanners and software designed by different vendors needs further
investigation. Clinical and biomedical engineering researchers at
the American Institute of Ultrasound in Medicine (AIUM)-RSNA
Quantitative Imaging Biomarkers Alliance (QIBA) Pulse-Echo
Quantitative Ultrasound (PEQUS) initiative for fat quantification
are working on standardization of ultrasound attenuation coef-
ficient technique for clinical application.2’ NAFLD is a common
disorder affecting liver and cardiovascular systems. Following the
validation of multiple quantitative imaging including ultrasound
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and MRI biomarkers to assess hepatic steatosis, the development
and implementation of artificial intelligence and machine learning
models in performing ultrasound attenuation imaging in NAFLD
management is encouraged.

In conclusion, the ROI depth significantly influences the diag-
nostic performance and value of liver AC estimation. The best ROI
location to measure liver AC in patients with BMI > 30 may be at
a depth of 6 cm from the skin. Technical considerations should be
taken in performing ATI for assessing hepatic steatosis in patients
with variable thickness of the subcutaneous tissue. Excluding re-
verberation, the region with blank color, and acoustic shadowing
from measurement ROI, and AC value with R <0.90 should be
taken into consideration when scanning and interpreting ATI to
screen for NAFLD. The study results provide the reference to de-
velop a standardized protocol in performing ATI.
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Abstract

Background and objectives: Gastric cancer (GC) is a prevalent gastrointestinal malignancy, yet its early detection remains
hindered due to the lack of available genetic markers. This study aimed to identify alternative genetic markers for the early
prognosis and prevention of GC.

Methods: This objective was achieved through the analysis of differentially expressed genes (DEGs) from three datasets ob-
tained from the Gene Expression Omnibus (GEO). By doing so, our goal was to identify hub genes associated with gastric
adenocarcinoma that could serve as potential biomarkers for the early detection and management of GC. Three GEO datasets
(GSE172032, GSE179581, and GSE181492), consisting of 10 normal and 10 GC samples were analyzed using the Galaxy web
server. The visualizations of DEGs, including heatmaps, volcano plots, and MD plots, were generated via the same tool. Shiny-
GO performed Gene Ontology and KEGG enrichment analysis, while NetworkAnalyst identified a protein-protein interaction
(PPI) network and screened 10 potential hub genes. Kaplan Meier plotter was used to analyze overall survival analysis for key
hub genes, and NetworkAnalyst was used to assess protein-drug interactions for the top 10 hub genes.

Results: A total of 1,079 common DEGs emerged across datasets, concentrating on significant GC-related pathways. Ten hub
genes (H2BC21, H3C12, H2BC17, H3C2, H3C10, ERBB4, H2ACS8, H3CS8, H2BC14, and MAPT) were found to be linked to GC via
PPI analysis. Survival analysis revealed that higher expression levels of ERBB4 and MAPT were associated with poor overall
survival in GC patients. Furthermore, protein-drug interaction analysis revealed that the protein product of the MAPT gene
exhibited a robust connection with drug compounds, specifically docetaxel and paclitaxel. These findings suggested that these
drugs have the potential to inhibit the function of MAPT.

Conclusions: In summary, our findings provide putative candidate biomarkers, provide insights into GC treatment strategies,
and highlight avenues for further research, contributing to a better understanding of the pathogenesis of GC.
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Keywords: Gastric adenocarcinoma; Survival analysis; Differentially expressed gene;
Biomarker.
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Cancer initiation occurs when cells in the body undergo unregu-
lated growth. Gastric cancer (GC), commonly termed stomach
cancer, originates from the uncontrolled growth of cells within
the stomach. Approximately 95% of cases involve the stomach
lining and exhibit a gradual progression of cell mass. If left un-
treated, it can progress into a tumor, infiltrating deeper layers of
the stomach wall. This tumor has the potential to metastasize to
adjacent organs, including the liver and pancreas.!> GC is a ma-
jor contributor to global cancer-related fatalities. Functionally,
the stomach aids digestion by secreting enzymes, gastric acid,
and the intrinsic factor essential for vitamin B12 absorption. Its
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lining comprises mucous membrane housing columnar epithelial
cells and glands. Unfortunately, these cells are susceptible to
inflammation, known as gastritis, which can progress to peptic
ulcers and, ultimately, culminate in GC.? In recent years, stom-
ach cancer has become a prevalent malignancy with significant
morbidity and mortality rates making it a pressing concern in
global medical research.*

GC is estimated to rank as the fifth most common cancer
and the third leading cause of cancer-related deaths worldwide.
Each year GC accounts for approximately 783,000 deaths, con-
stituting about 8% of all cancer-related deaths.>¢ The notable
frequency of late-stage diagnosis, resistance to treatment, and
the tendency to metastasize in GC significantly contribute to the
low survival rate, with less than 20% achieving 5-year survival,
and elevated recurrence rates in GC patients. Current treatment
relies primarily on surgical interventions complemented by con-
ventional chemotherapy, yet the outlook for GC patients remains
discouraging.””? Consequently, there is an urgent need to deter-
mine the molecular intricacies and potential biomarkers associ-
ated with GC. This approach is crucial not only for diagnosing
GC but also for inhibiting metastasis and advancing effective
treatment strategies, addressing a substantial and urgent demand
in this field.!

Genetic factors, such as polymorphisms, can serve as promis-
ing biomarker candidates due to their potential contribution to GC
risk. For instance, a study by Jing He et al. revealed that individu-
als with the rs873601A variant genotype in the nucleotide exci-
sion repair gene XPQG are at an elevated risk of developing gastric
adenocarcinoma.!’ Another study investigated the association of
eight SNPs in the mammalian target of rapamycin complex 1 gene
with GC in a cancer-control study and revealed that one of them
(rs1883965A) had a significant correlation.!? Similarly, a study in a
Chinese population revealed an association between the rs2298881
CA variant in the nucleotide excision repair pathway gene ERCC1
and an elevated risk of GC.!3 However, it is important to note that
these studies had limitations, such as a hospital-based case-con-
trol design and limited investigation of gene variants. Therefore,
further studies are needed to confirm these findings and explore
other genetic variants and risk factors. Additionally, the provided
sources do not specifically mention the use of these genetic varia-
tions as candidate biomarkers.

In the modern landscape of biology, high-throughput data,
including gene expression information obtained from RNA se-
quencing or microarrays, have gained broad utility in decipher-
ing the underlying molecular dynamics driving tumor progres-
sion. Among these tools, mRNA expression microarray platforms
stand out for their capacity to identify aberrant mRNA expression
patterns and uncover differential expression genes (DEGs).!# Re-
cently, many researchers have utilized gene expression microarray
platforms to explore the gene expression profiles characterizing
various grades of GC tissues, aiming to identify genes intricately
linked to the oncogenic processes underlying GC.!S With these
platforms, the Gene Expression Omnibus (GEO) database offers
methods for the bioinformatics mining of gene expression profiles
in a variety of tumors.'® In this study, we identified DEGs be-
tween GC tissues and adjacent normal tissues by integrating three
microarray datasets from the GEO database to find promising
novel biomarkers. These biomarkers may provide new insights
into the underlying molecular mechanisms and help understand
the occurrence, progression, and pathogenesis of GC. The com-
plete workflow followed to identify DEGs and perform in silico
analysis is depicted in Figure 1.
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Materials and methods

Retrieval of microarray data

RNA-Seq data from three datasets—GSE172032, GSE179581,
and GSE181492—comprising human GC and corresponding ad-
jacent normal tissue specimens, were included in our analysis.
The datasets included 20 tissue samples, including 10 gastric car-
cinoma tissues and 10 adjacent non-tumorous tissues explored in
our in-silico analysis. All gene expression profiles were pair-ended
secondary data downloaded from the GEO database (http:/www.
ncbi.nlm.nih.gov/geo/) of the National Center for Biotechnology
Information.!718

Expression analysis of DEGs

Galaxy (https://usegalaxy.org/) online analysis software was used
to analyze the DEGs in the two concerned conditions: human GC
and matched adjacent normal tissue specimens.'® Three datasets
were uploaded to the Galaxy web server to identify the DEGs.
The count table generated in Galaxy after the limma command
was subsequently converted into an Excel file and used to identify
DEGs between tumor tissues and adjacent non-tumorous tissue
samples. A p-value of 0.05 or lower was considered to indicate
statistical significance. Genes with log fold change (log2FC) > 1
and log2FC < —1 and a p-value of 0.05 or lower were considered
upregulated and downregulated, respectively.

Construction of heatmap, volcano plot, and MD plot of DEGs

Galaxy, a web-based platform, provides tools for researchers, even
those lacking informatics expertise, to conduct computational
analyses on extensive biomedical datasets.? In this study, the Gal-
axy web server’s limma package was used for visualizing heat-
maps, volcano plots, and MD plots.?!:22

Gene ontology (GO) and KEGG enrichment analysis of DEGs

ShinyGO (http://bioinformatics.sdstate.edu/go/) served as a web-
based tool for exploring GO term enrichment in genomic datasets.
It enables the comparison of uploaded data to reference sets of
gene or protein annotations. The tool visualizes the results of the
enrichment analysis in an interactive and user-friendly way, mak-
ing it easy for researchers to identify overrepresented functional
categories in their data. ShinyGO is built on the R programming
language and can be run locally or accessed through a web in-
terface. ShinyGO online software was used for GO and KEGG
enrichment analysis of DEGs.??

Protein-protein interaction (PPI) network construction and
module analysis

NetworkAnalyst (https://www.networkanalyst.ca) is a user-friendly
online tool that interprets gene expression data in the context of PPI
networks. NetworkAnalyst 3.0 includes features for meta-analysis,
allowing users to visually compare multiple gene lists through inter-
active heatmaps, enrichment networks, and Venn diagrams.?*25 It is
a powerful internet tool with a natural online interface that enables
researchers to perform PPIs easily.?52¢ This online tool was used to
construct the PPI network in our analysis.?42¢

Prediction of the hub genes

PPIs play a crucial role in biological processes including gene
expression, cell growth, proliferation, and apoptosis.?”-?® Under-
standing protein interactions provides an efficient approach for
screening hub genes. Hub genes pinpointed through a PPI net-
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Fig. 1. The complete workflow followed to identify DEGs and to perform their in-silico analysis. DEG, differentially expressed gene; GO, Gene Ontology;
KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, protein-protein interaction.

work-based approach have been documented in various cancers,
including breast cancer?® liver cancer®® and GC.3! Hub genes ob-
tained from the PPI subnet were more meaningful than individual
genes screened without network information.? Therefore, poten-
tial hub genes of GC were identified using PPI networks. Accord-
ing to the degree levels of PPIs, the top hub nodes were selected
as hub genes.
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Functional enrichment analysis of the hub genes

ExpressAnalyst is a web-based platform that focuses on gene
expression profiling and meta-analysis. Functional enrichment
analysis is a commonly used approach to identify the biological
functions or pathways associated with a set of genes of interest.
In this case, we were interested in performing functional enrich-
ment analysis of the hub genes on https://www.expressanalyst.ca,
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Table 1. Top 100 upregulated and top 100 downregulated gene identified in GC

DEGs Genes

Upregulated
Top 100 genes

CXCLS8, CXCL1, CCL20, ELF3, FCGR1A, LOC100128770, LGR5, SBSN, H2BC6, SLC26A3, GJB4, H2BC14, ZSCAN10, OVOL1,
CFAP276, FUT3, SGK2, NECTIN4, TNFRSF9, TTC24, H2AC18, SLC7A4, QPCT, IL13, H3C2, OR2B6, CXCL2, LRRC25, SLC7A9,

1L24, PI3, ALDOB, CILP2, CXCL3, LOC101928844, SOX30, DSG3, SP6, RAB33A, GPR25, GUCY1B2, H2AC13, H2BC7, SLC17A4,
SLC43A2, VPREB3, ARMH1, ABCGS, XIRP1, S, LAG3, PATL2, ADAMTS18, H2BU1, EREG, ZFP42, LINCO0528, LUCATI,
HAPLN4, H2BC8, CYP27A1, GJB5, KRT4, TINAG, MAJIN, ASIC4, OR13H1, H2AC19, H2BC17, LINCO0520, LHFPL3, H3C10,
BCAR4, H3C8, MEFV, H2BC21, H2BC18, GPR84, Céorf52, FUT5, LOC105372412, PAGE2B, TULP2, H2AC17, PKP1, H2ACS,
SLC3A1, LINCO0628, TRIM54, BAAT, H1-6, ARL14, SLC5A2, PRKCG, H3C12, INHBA, CCL25, CST6, TNNC2, DNAJB5-DT

Downregulated KANK4, CHRNA4, ADCYAP1R1, LMO1, MRO, SYT10, CCKAR, GRIA2, DAND5, DPP10, DPP6, PRRT4, ASB11, SLITRK4,

Top 100 genes

AQP4, RIMS1, ANKRD63, REEP1, CACNA2D3, CLCNKB, EPHA6, ACADL, PDILT, TAFA4, TUBB4A, CTB-178M22.2, OLFML1,

RBPMS2, SLITRK3, FOXN4, PRIMA1, LRRTM1, LINC01018, DIRAS1, C2CD4C, OLFM3, CTNNA2, FAXC, LINCO0908, LGI1,
FUT1, MRGPRF, ERBB4, GABRA5, PTHIR, PTGER2, LGI3, SORCS3, GNAZ, SERTM1, FGFBP2, MGATA4C, SYT4, SLITRKS,
MAPT, SMIM1, ENTPDS, EPHA5-AS1, LUZP2, LOC349160, TLR3, TMOD1, GABRG2, MTUS2, TSPAN18, ADCY8, NT5C1A,
HMGCLL1, SACS-AS1, KCNIP3, HPN-AS1, HSPB7, HCN1, ONECUT1, LRP1B, PTENP1-AS, PKD1L2, PHLDB2, VLDLR, NPPC,
AK4, RGMB-AS1, SEPTIN3, SNTB1, CPB1, PDGFD, LINCO1625, NPAP1, WFDC1, NCAMI-AS1, NWD2, SLC16A7, SHISALL,
SLC38A3, LINC02060, WHAMMP2, MASP1, PITPNM3, FGF14-AS1, SPART

DEG, differentially expressed gene; GC, gastric cancer.

an online tool for analyzing gene expression and gene network
data. ExpressAnalyst visualizes enriched functional categories in
a particular network.3?

Overall survival (0S) analysis of key Hub genes

The Kaplan Meier Plotter serves as a robust tool for evaluating the
association between gene expression (mMRNA, miRNA, protein)
and survival across a vast dataset encompassing over 30,000 sam-
ples derived from 21 distinct tumor types, such as breast, ovarian,
lung, and GCs. The information is curated from diverse sources
including GEO, the European Genome-phenome Archive, and The
Cancer Genome Atlas (TCGA) databases. Its primary utility lies
in conducting meta-analysis-driven identification and validation of
survival-related biomarkers in cancer research. Utilizing this tool,
we conducted an OS analysis of genes linked to these hub genes
through the Kaplan—Meier Plotter online database.?*

Identification of drug candidates based on hub genes

Understanding drug-protein binding is an essential step and is
routinely investigated in the pre-clinical stages of drug discov-
ery for determining the activity and consequences of the drug.’
NetworkAnalysit, a powerful internet tool with a natural online
interface, enables researchers to perform protein-drug interactions
with ease.?’ This online tool was used to construct the protein-drug
interactions in our analysis.?*

Results

Exploring DEGs in GC: heatmap, volcano plot, and MD plot
analysis

Galaxy web analysis identified a total of 1,079 DEGs, including
638 upregulated genes and 441 downregulated genes (Table 1).
An expression heatmap, volcano plot, and MD plot (Fig. 2) were
constructed to visualize the identified DEGs.

The heatmap, volcano plot, and MD plot show the expression
profiles of the GSE172032, GSE179581, and GSE181492 data-
sets. A heatmap of DEGs is a useful visualization tool for analyz-
ing gene expression data. The heatmap displays gene expression
values as a color-coded matrix, with each row representing a gene
and each column representing a sample or experimental condition.
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The color of each cell in the matrix corresponds to the expression
level of a gene in a particular sample or condition, with higher ex-
pression levels represented by warmer colors (e.g., red) and lower
expression levels by cooler colors (e.g., blue).3¢ Figure 2a shows
the heatmap of the top 10 DEGs in the three datasets. Gene ex-
pression levels are indicated by colors, as shown by the red arrow
representing a high expression level and blue representing a low
expression level. The top 10 DEGs based on 1og2FC and p-value
obtained from the heatmap are presented in Table 2.

The ENSG00000077684 gene, also known as JADEI, was ex-
cluded from the table due to no statistical significance, as indicated
by a log2FC of 0.862011258 and a p-value of 2.06E-05.

A volcano plot is a graphical representation commonly used to
visualize the results of differential expression analysis. The x-axis
of the volcano plot represents the 10g2FC in expression levels be-
tween two groups (such as treatment vs. control). The y-axis repre-
sents the negative logarithm of the p-value or the adjusted p-value,
reflecting the statistical significance of the differential expression.

Figure 2b presents the volcano plot for the three aforementioned
datasets. Each dot within the plot corresponds to a gene. Dots situ-
ated towards the positive end of the 1og2FC spectrum denote genes
exhibiting elevated expression levels, while those positioned to-
wards the negative end signify genes with reduced expression lev-
els. Dots situated precisely at a 1og2FC score of zero indicate genes
that, based on the criteria of a p-value<0.05 and |log2 FC| > 1,
show no significant differential expression.

Figure 2¢ shows the MD plot of DEGs in the three datasets. A
red dot indicates genes with high levels of expression, a blue dot
indicates genes with low levels of expression, and a black dot indi-
cates genes with no differential expression based on the criteria of
p-value<0.05 and |log2 FC| > 1.

Functional enrichment analysis reveals diverse biological sig-
natures of DEGs in GC

To identify the pathways that had the most significant involvement
in the genes identified, the top 100 upregulated and top 100 down-
regulated DEGs were submitted to ShinyGO for GO and KEGG
pathway analysis. GO analysis revealed that in biological process
terms, the DEGs were mainly enriched in the interleukin-7-medi-
ated signaling pathway, innate immune response in the mucosa,
DNA replication-dependent nucleosome assembly, presynaptic
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Fig. 2. Differential gene expression in GC. (a) Heatmap of the top 10 differentially expressed genes. (b) Volcano plot of Treated-Control. (c) MD plot of

Treated-Control. MD, Mean-Difference; LogFC, Log Fold Change.

organization, antimicrobial humoral immune response mediated
by an antimicrobial peptide, nucleosome assembly, chromatin as-
sembly, nucleosome organization, chemokine-mediated signaling
pathway, chromatin assembly or disassembly, antimicrobial hu-
moral response, DNA packaging, negative regulation of inflam-
matory response to an antigenic stimulus, chromatin remodeling,
protein-DNA complex assembly, DNA conformation change, and
protein—DNA complex subunit organization (Fig. 3a).

The GO analysis further unveiled that, with regard to cellular
components, the DEGs exhibited prominent enrichment in vari-
ous categories. These included Nucleosome, DNA packaging com-
plex, Protein-DNA complex, Cornified envelope, Brush border

DOI: 10.14218/JTG.2023.00072 | Volume 2 Issue 1, March 2024

membrane, GABA-ergic synapse, Integral component of postsyn-
aptic specialization membrane, Postsynaptic specialization mem-
brane, lon channel complex, Receptor complex, Transmembrane
transporter complex, Synaptic membrane, Transporter complex,
Integral component of the plasma membrane, Plasma membrane
protein complex, Chromatin, Plasma membrane region, Synapse
(Fig. 3b).

The molecular functions of DEGs included l-cystine transmem-
brane transporter activity, 4-galactosyl-N-acetylglucosaminide
3-alpha-L-fucosyltransferase activity, fucosyltransferase activity,
CXCR chemokine receptor binding, basic amino acid transmem-
brane transporter activity, chemokine activity, peptide hormone
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Table 2. The top 10 DEGs based on log2FC and p-value obtained from
the heatmap

Gene ID Gene Name log2FC p-value
ENSG00000132854  KANK4 -5.629  6.41E-08
ENSG00000166948 TGM6 1.209 0.012455544
ENSG00000144824  PHLDB2 -2.193 4.75E-06
ENSG00000130182  ZSCAN10 3.635 6.05E-06
ENSG00000089692  LAG3 3.021 6.55E-06
ENSG00000115850  LCT 1.572 0.034674889
ENSG00000188373  C100rf99 1.363 0.034141968
ENSG00000169429  CXCLS8 6.689 2.66E-05
ENSG00000132000 PODNL1 1.828 0.027691668

DEG, differentially expressed gene.

binding, potassium channel regulator activity, chemokine recep-
tor binding, protein heterodimerization activity, ligand-gated ion
channel activity, cytokine activity, receptor ligand activity, signal-
ing receptor activator activity, channel activity, passive transmem-
brane transporter activity, protein dimerization activity, transmem-
brane transporter activity, and transporter activity (Fig. 3c).
KEGG pathway analysis demonstrated that DEGs were sig-
nificantly enriched in systemic lupus erythematosus, glycosphin-
golipid biosynthesis, neutrophil extracellular trap formation, alco-
holism, nicotine addiction, viral protein interaction with cytokine
and cytokine receptor, legionellosis, IL-17 signaling pathway, epi-
thelial cell signaling in Helicobacter pylori infection, GABAergic
synapse, rheumatoid arthritis, pancreatic secretion, amoebiasis,

Hannan S. et al: Hub genes in gastric cancer

insulin secretion, retrograde endocannabinoid signaling, necropto-
sis, chemokine signaling pathway, viral carcinogenesis, cytokine—
cytokine receptor interaction, transcriptional misregulation in can-
cer (Fig. 3d).

PPI network construction and module analysis unveil molecu-
lar insights into DEGs

By evaluating the relationships between various DEGs, a PPI net-
work was constructed to assess the significance of these DEGs.
This strategy enables researchers to concentrate on the most per-
tinent interactions and pinpoint crucial functional DEG modules,
illuminating the molecular mechanisms underlying the studied ill-
ness or disease. Interactions between the identified DEGs revealed
a total of 664 nodes and 1,892 edges in 29 subnetworks (Fig. 4).

Prediction of top hub genes through PPI network analysis

Hub gene prediction aimed to identify the hub genes based on the
PPI network and uncover their clinical value. Hub genes were iden-
tified using PPI networks. According to the degree levels of PPIs,
the top hub nodes were selected as hub genes. Our study identified
a total of 30 hub nodes and among them, the top 10 hub nodes were
predicted as hub genes for further analysis as shown in Table 3.

Functional enrichment analysis of predicted hub genes unveils
insights into molecular mechanisms

Subsequent functional enrichment analysis, visualizing functional
categories enriched in a network, revealed that the genes in this
module were mainly enriched in systemic lupus erythematosus,
alcoholism, viral carcinogenesis, necroptosis, transcriptional
misregulation in cancer, gastric acid secretion, thyroid hormone
synthesis, calcium signaling pathway, ERBB4 signaling pathway,
insulin, and salivary secretion, etc. (Fig. 5)

Fig. 3. Functional enrichment analysis of DEGs in GC. GO analysis revealed that DEGs were significantly enriched in (a) biological process terms (b) cellular
component terms (c) molecular function terms (d) significantly enriched KEGG terms obtained from KEGG analysis. DEG, differentially expressed gene;

KEGG, Kyoto Encyclopedia of Genes and Genomes; GO, Gene Ontology.
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Fig. 4. PPI network of the top 100 upregulated and top 100 downregulated genes identified in GC. PPI, protein-protein interaction; GC, gastric cancer.

OS analysis reveals prognostic significance of hub genes in GC
patients

The outcomes from Kaplan—Meier plotting underscored the impact
of two central genes (ERBB4 and MAPT) on GC prognosis. This
analysis included 875 patients. Our findings indicate that ERBB4
and MAPT exhibit favorable associations with the overall survival
of GC patients. Conversely, the remaining hub genes (H2BC21,
H3C12, H2BC17, H3C2, H3C10, H2ACS, H3C8, H2BC14) were
not present in the Kaplan-Meier Plotter database (Fig. 6).

Prediction of drug candidates for the top 10 hub genes

The NetworkAnalyst tool (www.networkanalyst.ca/) was em-
ployed to scrutinize potential drug candidates for the top 10 hub
genes through protein-drug interaction analysis. This analysis lev-
eraged the DrugBank database (version 5.0), which is exclusively
personalized for human data. (25). The analysis concluded that
only two drugs interact with the protein product of the MAPT hub
gene. In contrast, other hub genes did not show any interaction
with the enlisted drugs in the database. Figure 7 shows the protein-
drug interaction network between the hub proteins of MAPT, and
the proposed drugs were obtained with the help of the Network-
Analyst tool, where the degree of interaction is represented by the
area of the nodes. The tool suggested that docetaxel and paclitaxel
from the DrugBank database (version 5.0) play a role in the treat-
ment of many cancers, including GC, and are associated with the
regulation of MAPT expression. Docetaxel is a taxoid antineoplas-
tic agent used to treat various cancers, such as locally advanced or
metastatic breast cancer, metastatic prostate cancer, gastric adeno-
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carcinoma, and head and neck cancer.3”-*® Similarly, paclitaxel is a
taxoid chemotherapeutic agent used as a first-line and subsequent
therapy for the treatment of advanced carcinoma of the ovary, and
other various cancers, including breast and lung cancer.?’

Discussion

The TCGA research network has devised a genetic classification
system for GC, encompassing four distinct subtypes: Epstein Barr
virus positive, microsatellite instability (MSI), genomically stable,
and chromosomally unstable (CIN). This classification is rooted
in the analysis of genetic alterations within GC samples, offering
valuable insights into the molecular basis of the malignancy. The
TCGA classification has been popularly utilized in both preclinical
and clinical studies to settle on treatment approaches and patient
prognosis. For example, it aids in identifying specific therapeutic
targets for different GC subtypes. A case in point would opt for
immune checkpoint inhibitors for MSI-high tumors. Furthermore,
it has proven to be instrumental in creating prognostic models for
patient survival and guiding personalized treatment methods.*’
The PD1/PDL1 pathway plays a critical role in the immune
checkpoint system in GC. The PD1 receptors on immune cells in-
teract with PDL1 ligands, which are expressed in both tumor cells
and immune cells. This interaction curbs immune activity causing
subsequent immune suppression and evasion of tumor. High PDL1
expression is usually connected to poor prognosis in GC patients,
indicating its potential as a prognostic factor. Moreover, the PD1/
PDL1 pathway has already been a target for immunotherapy in
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Table 3. The top 20 hub nodes according to degree levels

Hannan S. et al: Hub genes in gastric cancer

ENTREZ ID ENSEMBL ID GENE Symbol Degree Betweenness
8349 ENSG00000184678 H2BC21 116 46,206.28
8356 ENSG00000197153 H3C12 74 8,226.37
8348 ENSG00000274641 H2BC17 71 8,981.81
8358 ENSG00000286522 H3C2 62 2,602.36
8357 ENSG00000278828 H3C10 55 1,211.2
2066 ENSG00000178568 ERBB4 53 23,502.95
3012 ENSG00000277075 H2ACS8 53 4,246.52
8355 ENSG00000273983 H3C8 52 1,163.28
4137 ENSG00000186868 MAPT 47 28,396.16
8342 ENSG00000273703 H2BC14 47 4,428.13
2781 ENSG00000128266 GNAZ 41 28,934.41
8343 ENSG00000277224 H2BC7 41 415.45
8344 ENSG00000274290 H2BC6 41 415.45
8339 ENSG00000273802 H2BC8 41 410.57
2891 ENSG00000120251 GRIA2 38 42,220.87
8337 ENSG00000203812 H2AC18 38 1,288.19
8329 ENSG00000196747 H2AC13 37 1,468.81
723790 ENSG00000272196 H2AC19 34 795.73
440689 ENSG00000203814 H2BC18 33 4,941.79
128312 ENSG00000196890 H2BU1 25 157.58
Gap junction Thyroid hormone synthesis
H4AC12 H3C10
H2BC14 Gastric acid secretion FQPC7
H2BC18 ey decssitin Long-term depression
H2BC21
HAC11 H3C8 el
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Fig. 5. Functional enrichment analysis of predicted hub genes.
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Fig. 6. Overall survival analysis of GC patients. Here, (a) ERBB4 and (b) MAPT expression data-based (microarray) association study in the survival rate of
patients with gastric cancer. A log-rank test was performed to evaluate the survival differences between the two curves. HR, Hazard Ratio; ERBB4, erythro-

blastic oncogene B; MAPT, microtubule-associated protein Tau.

GC, with promising results from clinical trials using the PD1/
PDL1 inhibitors—pembrolizumab and nivolumab for advanced
cancer patients. This pathway is important because it regulates the
immune response and serves as a target for personalized treatment
options. However, further research is required to identify addi-
tional predictive markers, as not all patients with increased PDL1
expression respond to its inhibitors.*’

The present study employed a comprehensive bioinformatics
approach to identify key candidate genes and pathways associated
with human GC. Through the integration of gene expression pro-
filing, PPI analysis, pathway enrichment, and functional annota-
tion analysis, the study identified 10 hub genes that may serve as
potential biomarkers for GC. The identified hub genes included
H2BC21, H3CI12, H2BC17, H3C2, H3CI0, ERBB4, H2ACS,
H3C8, H2BC14, and MAPT.

One of the important hub genes, ERBB4 (also known as HER4)
is a member of the epidermal growth factor receptor family of re-
ceptor tyrosine kinases (RTKs). This receptor has been implicated
in the development and progression of various cancers, including
GC.*! Several studies have shown that ERBB4 can promote the
proliferation of GC cells through the PI3K/Akt signaling path-
way.*>#* This pathway is a key regulator of cell growth, survival,
and metabolism, and is frequently dysregulated in cancer. Upon
ligand binding, ERBB4 undergoes activation, subsequently re-

=

Paclitaxel
/
/ MAPT
Docetaxel

Fig. 7. Protein-drug Interactions analysis with the products of MAPT hub
genes. MAPT, microtubule-associated protein Tau.
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cruiting and activating PI3K, which, in turn, triggers Akt activa-
tion. The activated Akt pathway fosters cell survival and growth
by phosphorylating downstream targets involved in essential pro-
cesses such as cell cycle regulation, protein synthesis, and metabo-
lism. In GC cells, ERBB4 has been found to promote proliferation
by activating the PI3K/Akt pathway. Inhibition of ERBB4 or its
downstream effectors, such as PI3K or Akt, can significantly re-
duce cell proliferation and induce apoptosis in GC cells. Therefore,
targeting the ERBB4/PI3K/Akt pathway may represent a promis-
ing strategy for the treatment of GC.*2~#4

Another pivotal hub gene, known as the clustered histone gene
group H3 (H3C2, H3CS8, H3C10, H3C12), plays a crucial role in
chromatin remodeling and is intricately associated with gastric
adenocarcinoma.*> Numerous investigations have indicated that
modifications in the expression of H3 cluster histone genes could
play a pivotal role in the initiation and advancement of GC. For
instance, Mitani et al.*® found that the tumor suppressor gene P21
WAP1/CIP1, which has a low level of H3 acetylation on promoter,
resulted in its down-regulation in GC. Additionally, a study re-
vealed a significant upregulation of the H3 cluster of histone genes
in GC tissues.*” Furthermore, alterations in the post-translational
modifications of histone proteins have also been implicated in GC.
As an illustration, the dysregulation of histone H3 acetylation on
lysine residues has been demonstrated in GC. Elevated levels of
histone H3 acetylation have been connected to tumor progression
and an unfavorable prognosis.*®*® In addition, alterations in the
post-translational modifications of histone proteins have also been
implicated in GC. For example, the acetylation of lysine residues
on histone H3 has been shown to be dysregulated in GC, and in-
creased levels of histone H3 acetylation are associated with tumor
progression and poor prognosis.

Collectively, these studies suggest that alterations in the expres-
sion and modification of H3 cluster histone genes may play a role
in the development and progression of GC. Further extensive in-
vestigations are needed to gain deeper insights into the intricate
molecular mechanisms that underlie these findings and to pave the
way for innovative therapeutic approaches aimed at both prevent-
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ing and treating GC.

Another pivotal hub gene, MAPT, is closely linked to GC due to
its expression pattern. Tau actively contributes to the stabilization
and assembly of microtubules. Its primary expression is observed in
neurons, where it crucially maintains axonal structure and function.
However, recent studies have suggested that tau expression may also
be involved in the development and progression of certain types of
cancer, including GC.#! In one study, it was reported that there was
a notable upregulation of tau expression in GC tissues when com-
pared to adjacent noncancerous tissues.*’ Furthermore, elevated
tau expression was associated with advanced tumor stage, lymph
node metastasis, and an unfavorable patient prognosis.*® The pre-
cise mechanisms that underlie the link between tau expression and
GC remain partly elusive. However, it is plausible that these mecha-
nisms encompass interactions with other proteins or modulation of
signaling pathways that oversee critical cellular processes such as
proliferation, survival, and migration. Overall, these studies suggest
that the expression of MAPT may be associated with GC. However,
further research is needed to better understand the role of tau in GC
pathogenesis and to develop novel therapeutic strategies targeting
tau for the prevention and treatment of this disease.

The hub mentioned above genes have previously been reported
to be involved in various cellular processes, including nucleo-
some and chromatin assembly, ligand-gated ion channel activity,
CXCR signaling receptor activity, systemic lupus erythematous,
glycosphingolipid biosynthesis, IL-17 signaling pathway, pancre-
atic secretion, and viral carcinogenesis, which are recognized to be
crucial in the emergence and progression of stomach cancer.3-52
The investigation additionally identified several novel genes, in-
cluding H2BC21, H2BC17, H3BC14, and H2ACS8 which have not
previously been implicated in GC.

Through pathway enrichment analysis, a cluster of pivotal path-
ways correlated with GC emerged. These include gastric acid se-
cretion, alcoholism, salivary secretion, ErbB4 signaling pathway,
viral carcinogenesis, and retrograde endocannabinoid signaling
pathways. These pathways, which are dysregulated across diverse
cancers, including GC, play a significant role in crucial processes,
such as cell proliferation and survival.

The findings of this study provide valuable insights into the
molecular mechanisms underlying GC development and progres-
sion. The identified hub genes and pathways may serve as poten-
tial therapeutic targets for the development of novel therapies for
GC treatment. Furthermore, the identified hub genes may serve
as potential biomarkers for the early detection of GC. This study
has several limitations. Limitations and potential directions for fu-
ture research are that the stomach region from which the tumor
samples were taken was not specified before collecting the pair-
ended microarray datasets used in this analysis, and samples taken
from the same disease stage are preferable for a better study of
each form of cancer. However, the source of the microarray data
was not mentioned, and all the linear correlations between gene
expression levels that were known to exist were used in this in-
vestigation. Future research that incorporates nonlinear relation-
ships more thoroughly may produce more accurate information
about the interactions between proteins and possibly recommend
new medicines. To quantify gene expression, RNA-Seq technol-
ogy may provide more accurate data. However, paired RNA-Seq
data were not available for this study, paired microarray data were
used instead, which matched better and might yield more reliable
results. In addition, the study did not investigate the regulatory
mechanisms of the identified hub genes in GC, which warrants
further investigation.
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Conclusions

This study identified 1079 DEGs, with 638 upregulated and 441
downregulated, between human GC tissues and matched adjacent
normal tissue specimens based on the GSE172032, GSE179581,
and GSE181492 datasets. Further analysis of DEGs suggested
that three types of hub genes namely, H3 Clustered Histone genes
(H3C2, H3C8, H3C10, H3C12), HER4, and MAPT, could play
critical roles in the progression of GC. The strong association of
these predicted hub genes with the progression of GC has been
identified in many studies by researchers. In summary, the present
study provides a comprehensive analysis of key candidate genes
and pathways in human GC using a bioinformatics approach. The
identified hub genes and pathways provide valuable insights into
the molecular mechanisms underlying GC development and pro-
gression and may serve as potential therapeutic targets and bio-
markers for the early detection of GC.
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Abstract

This review summarizes the current investigations that confirm the significance of liver fibrosis (LF) as an independent cardio-
vascular risk factor in non-alcoholic fatty liver disease (NAFLD). PubMed, Google Scholar, Web of Science platform, Reference
Citation Analysis, and Cochrane Systematic Reviews were searched for articles published between 2008 and 2023. Relevant

s a7

articles were identified using the following keywords: “cardiovascular diseases”, “cardiovascular risk factors”, “non-alcoholic
fatty liver disease”, “nonalcoholic steatohepatitis”, and “liver fibrosis”. The reference lists of the identified articles were also
searched for other relevant publications. The investigations that described LF as a cardiovascular risk factor in NAFLD met the
inclusion criteria. NAFLD occupies a leading position among liver diseases worldwide. Cardiovascular disorders are the most
significant cause of unfavorable outcomes in NAFLD patients. Currently, the relationship between them is well established.
The pathophysiological mechanisms predisposing to the development of cardiovascular disorders in NAFLD include athero-
genic dyslipidemia, impaired glucose metabolism and liver insulin resistance, low-grade systemic inflammation, endothelial
dysfunction, cardiovascular remodeling, as well as gut dysbiosis, which are influenced by numerous genetic and epigenetic
factors. Identification of cardiovascular risk factors in NAFLD is an important public health issue. At present, there is evi-
dence that the presence of advanced LF may be a strong independent predictor and risk factor for cardiovascular disorders
in NAFLD. It is obvious that early diagnosis of LF will allow to stratify NAFLD patients by cardiovascular risk groups and
thereby determine the most optimal therapeutic interventions.

Introduction tis (NASH). NASH, in addition to steatosis, is characterized by lob-
ular inflammation, hepatocyte ballooning, and various LF stages.?
The correlation between NAFLD and cardiovascular diseases
(CVDs) is established by numerous clinical studies.> NAFLD and
NASH are accompanied by an increase in the frequency of car-
diovascular events, particularly coronary artery disease, hyper-
tension, atherosclerosis,* myocardial infarction, ischemic stroke,
atrial fibrillation, and heart failure. The risk of these events es-
calates with the progression of NAFLD, especially in advanced
LF.%7 As a result, CVDs are currently the predominant cause of
death in NAFLD patients.® This problem is compounded by an
increase in the number of NAFLD patients with CVDs, who may
have cardiovascular risk factors.® Therefore, the most commonly

Non-alcoholic fatty liver disease (NAFLD) occupies a leading po-
sition among liver diseases worldwide. The ubiquitous NAFLD
incidence increased from 25.26% in 1990-2006 to 38.00% in
2016-2019." NAFLD is described as a condition in which >5% of
hepatocytes accumulate fat in patients who do not abuse alcohol.
There are two main manifestations: simple steatosis without liver fi-
brosis (LF) (nonalcoholic fatty liver) and nonalcoholic steatohepati-
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used assessment systems, such as the Framingham risk score for
hard coronary heart disease, may underestimate the cardiovas-
cular risk associated with NAFLD.!? Nevertheless, serious car-
diovascular disorders can occur in all clinical forms of NAFLD
regardless of established cardiovascular risk factors.!! For ex-
ample, the relationships between NAFLD, insulin resistance,
metabolic syndrome, and CVDs have been well established.!?
It is known that the metabolic syndrome is characterized by a
combination of signs such as abdominal obesity, dyslipidemia,
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glucose metabolism disorders and hypertension.!> However,
even normoponderal NAFLD patients have an increased risk of
CVDs.' This is likely due to the presence of other independent
cardiovascular risk factors in NAFLD patients. At present, there
is evidence that the presence of advanced LF may be a strong in-
dependent predictor and risk factor for cardiovascular disorders
in NAFLD.!5:16

This review summarizes the current investigations that confirm
the significance of LF as an independent cardiovascular risk factor
in NAFLD.

Literature search

PubMed, Google Scholar, Web of Science platform, Reference Ci-
tation Analysis, and Cochrane Systematic Reviews were searched
for articles published between 2008 and 2023. Relevant articles
were identified using the following keywords: “cardiovascular

ELINT3 ELINTS

diseases”, “cardiovascular risk factors”, “non-alcoholic fatty liver
disease”, “nonalcoholic steatohepatitis”, and “liver fibrosis”. The
reference lists of the identified articles were also searched for oth-
er relevant publications. The investigations that described LF as

a cardiovascular risk factor in NAFLD met the inclusion criteria.

Pathophysiological mechanisms of cardiovascular disorders
in NAFLD

The pathophysiological mechanisms predisposing to the devel-
opment of cardiovascular disorders in NAFLD are complex and
multifactorial.!” These mechanisms include atherogenic dys-
lipidemia, impaired glucose metabolism, liver insulin resistance,
low-grade systemic inflammation, endothelial dysfunction, as
well as gut dysbiosis, all of which are influenced by numerous
genetic and epigenetic factors.!® In addition, advanced LF/cir-
rhosis in NASH may contribute to cardiovascular disorders as a
result of cardiovascular remodeling in response to the hyperdy-
namic circulatory state associated with portal hypertension. The
term “remodeling” began to be used in cardiology in the 1980s,
and in strict interpretation, means the process of reorganization of
the existing structure, during which new material is attached to it,
or it is completely changed (Fig. 1).!° In particular, left ventricu-
lar concentric remodeling, which was an unfavorable prognostic
sign, was revealed in NASH patients.?’ LF in NASH may also be
associated with CVDs by a more expressed profile of systemic in-
flammation affecting various organs and systems and the interac-
tions between them, leading to further inflammation and immune
response activation.?!

Noninvasive tests of liver fibrosis to assess cardiovascular risk
in NAFLD

Given the known limitations of performing a liver biopsy, non-
invasive tests of LF have been used in most investigations to
assess cardiovascular risk in NAFLD (Table 1).2223:2444 The Fi-
brosis-4 (FIB-4) score is an index based on aspartate aminotrans-
ferase (AST) level, alanine aminotransferase (ALT) level, platelet
count, and age to evaluate LF. When evaluating LF in NAFLD
patients, a FIB-4 score<1.3 is categorized as low risk, while a
FIB-4 score>2.67 is categorized as high risk of LF.5 The NAFLD
fibrosis score (NFS) is a combined assessment of age, hyperglyce-
mia, body mass index, platelet count, albumin, and the AST/ALT
ratio to evaluate LF. The following NFS thresholds for evaluating
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LF are proposed: <—1.455 - predictor of absence of significant
LF (F0-F2); <—1.455 to <0.675 - indeterminate score; >0.675 -
predictor of presence of significant LF (F3-F4).46 The BARD
score includes three variables: AST/ALT ratio >0.8-2 points; a
body mass index >28—1 point; and the presence of type 2 diabe-
tes mellitus (T2DM)—1 point. The possible score ranges from 0
to 4 points. A total score of >2 is associated with advanced LF.47
The APRI index is calculated by using the formula AST/upper
limit of normal x 100/platelet count. APRI index values of <0.3
and <0.5 rule out significant LF and cirrhosis, respectively, and
a value of > 1.5 rules out significant LF.*® The Forns index, cal-
culated based on the following four parameters: patient age, total
cholesterol, gamma-glutamyl transferase, and platelet count, has
the cut-off points for the LF assessment <4.2 and >6.9.4° Transient
elastography is the most commonly used imaging-based LF as-
sessment method. To exclude advanced LF in NAFLD patients,
the recommended values of liver stiffness measured by transient
elastography are <8 kPa. The general limitations of noninvasive
tests include insufficient verification accuracy for mild and mod-
erate LF and inadequate differences in adjacent LF stages; in addi-
tion, there are not enough noninvasive tests to diagnose subclini-
cal hepatic inflammation and ballooning, as well as to accurately
determine the severity of portal hypertension in compensated ad-
vanced chronic liver disease. There are also specific advantages
and limitations of individual noninvasive tests. Finally, the test-
retest reliability of noninvasive tests has not been fully studied,
warranting future research. Nevertheless, the use of noninvasive
tests in scientific research for evaluating liver disease severity and
prognosis is supported by the current guidelines.>°

Impact of liver fibrosis on cardiovascular risk in NAFLD

It has been shown that patients with NASH or advanced LF are at
a higher risk of atherosclerotic CVDs compared to non-LF NAFLD
patients, independent of established cardiovascular metabolic risk
factors.?? In a study by Labenz et al.,’! the overall 10-year CVDs
risk, according to the Framingham risk scale, was high among pa-
tients with histologically confirmed NAFLD, with the highest risk
observed in those with advanced LF. Noninvasive LF markers in
NAFLD patients may be predictors of an increased risk of cardio-
vascular events, regardless of metabolic syndrome.?? For example, a
FIB-4 score >2.67 was found to be a strong independent prognostic
criterion for major adverse cardiovascular events in NAFLD and
was invariably associated with unstable angina, myocardial infarc-
tion, heart failure, percutaneous coronary intervention, and coronary
artery bypass grafting in addition to known cardiovascular risk fac-
tors.?* In a study by Hanson et al.,5? the NFS in NAFLD patients
with advanced LF without prior CVDs was found to be an independ-
ent predictor of cardiovascular events, even after adjusting for the
relevant covariates, which included cardiovascular risk indicators
such as the Framingham risk score and atherosclerotic CVDs indi-
cators. In the Alimentazione, Benessere Cardiovascolare e Diabete
study, the LF severity assessed by transient elastography was an
independent factor for a higher atherosclerotic CVDs risk in addi-
tion to steatosis after adjusting for obesity.?S Multivariate adjusted
logistic regression models that were used in 3,276 adult participants
of the Framingham Heart Study showed a significant association be-
tween advanced LF assessed by transient elastography and obesity-
related signs, namely, hypertension, low high-density lipoprotein
cholesterol and most notably, T2DM. This association persisted with
a 2.5-fold increase even after accounting for controlled attenuation
parameters. This suggests a link between LF and cardiometabolic
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Fig. 1. Potential pathophysiological mechanisms of cardiovascular disorders in non-alcoholic fatty liver disease. NAFLD, non-alcoholic fatty liver disease;
NASH, nonalcoholic steatohepatitis.

diseases in addition to an association with liver steatosis.?® tal number of deaths in NAFLD, making it the predominant cause

of mortality.>® According to a meta-analysis by Younossi et al.,!
the pooled CVDs-related mortality rate in NAFLD patients was
4.2 per 1,000 person-years. The NAFLD severity is the main fac-
tor determining the increased risk of CVDs. Therefore, patients
with NASH and progressive LF can be classified as a special risk
group.™* In a large study involving 11,154 patients, 34% of whom

Impact of liver fibrosis on the cardiovascular outcome in
NAFLD

Although liver-related complications are a significant cause of
mortality in NAFLD, CVDs accounts for at least 40% of the to-
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were diagnosed with NAFLD, higher values of noninvasive LF
tests, such as the APRI index, FIB-4 score, and NFS, were associ-
ated with a progressive increase in CVDs mortality after correction
for other predictors of death.?” In a study by Mann et al.,> NAFLD
patients with liver cirrhosis had higher mortality regardless of
known cardiovascular risk factors. Additionally, liver steatosis
and/or advanced LF in NAFLD patients assessed by the fatty liver
index as well as the BARD score and NFS significantly correlated
with the risk of heart failure and mortality.?8:50

Impact of liver fibrosis on cardiovascular comorbidities in
NAFLD

NAFLD can negatively affect both the coronary arteries and other
heart anatomical structures, contributing to an increase in morbid-
ity and mortality from CVDs among NAFLD patients.5’ In par-
ticular, there is strong evidence linking NAFLD with the risk of
developing coronary atherosclerosis and coronary artery disease,
cardiac structural and functional abnormalities, cardiac valvular
calcification, cardiac arrhythmias, and conduction defects.>8

Subclinical coronary atherosclerosis

For a long time, NAFLD was not considered a probable cause of
atherosclerosis but was recognized as a valuable indicator of the
early stages of its development.’® Moreover, well-planned and
controlled studies conducted in recent years have provided very
valuable information that allows one to take a fresh look at the
relationships among these pathological conditions.% In particular,
the association of LF in NAFLD with subclinical atherosclerosis
was shown, and LF severity aggravated this relationship.?®

Coronary artery calcium scoring via computerized tomography
is usually used to determine the degree of coronary atherosclerosis.
In a study involving 665 NAFLD patients, noninvasive LF mark-
ers, such as APRI index, NFS, and FIB-4 score, made it possible to
reliably predict the values of the coronary calcium index >100 via
computerized tomography.® In a study by Tsai et al.,*' NAFLD
patients with basal coronary plaques had higher NFSs, FIB-4
scores and Forns index, suggesting the possibility of their use for
early identification of coronary plaques and prediction of the risk
of adverse cardiovascular events. According to a study by Chen
et al.,» NAFLD patients with advanced LF assessed by the NFS
had a higher probability of carotid artery intima-media thickening,
the presence of carotid plaque and arterial stiffness, regardless of
known metabolic factors, prior cardiovascular events, or insulin
resistance. It was found that NASH patients have higher carotid ar-
tery intima-media thickness than nonalcoholic fatty liver patients.
In addition, NASH patients had high levels of high-sensitivity C-
reactive protein, and the levels of high-sensitivity C-reactive pro-
tein were significantly correlated with LF. It is known that high
levels of highly sensitive C-reactive protein are associated with an
increased risk of heart attack.! Interestingly, lean NAFLD patients
with advanced LF are more likely to have atherosclerotic CVDs
than obese subjects.?

Coronary artery disease

The presence, severity and prevalence of coronary artery disease
may be associated with NAFLD, regardless of well-known risk fac-
tors. In addition, the relationship between coronary artery disease
and NAFLD may be attributed to the formation of atherosclerotic
coronary plaques characteristic of both diseases. Their calcium
content according to computerized tomography data is a clinically
significant sign of subclinical coronary artery disease.%? In a study
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by Wong et al.,%* NAFLD patients prevailed among those with sig-
nificant coronary artery stenosis. An association between NAFLD
and an increased risk of acute myocardial infarction has also been
shown, regardless of known risk factors.** An independent cor-
relation was shown between the FIB-4 score in NAFLD patients
and the risk of coronary artery disease.’ In a study by Ghoneim et
al.,%* it was found that NASH is associated with acute myocardial
infarction regardless of the established risk factors. The probabil-
ity of acute myocardial infarction in young NASH patients was
higher than that in older subjects. Acute myocardial infarction is a
frequent outcome in NASH patients.

Subclinical cardiac structural and functional abnormalities

Recent studies have identified NAFLD as a risk factor not only
for premature coronary artery disease and cardiovascular events
but also for early cardiac structural and functional abnormalities.
For example, in a study by Lee et al.,’¢ it was demonstrated that
advanced LF in NAFLD patients without a history of CVDs cor-
relates with an increase in left ventricular filling pressure, which
is associated with diastolic dysfunction associated with impaired
myocardial glucose uptake. It was noted that left ventricular dias-
tolic dysfunction in advanced LF was significant only in NAFLD
patients without obesity.?” Alterations in myocardial structure
and in the load dependence of left ventricular diastolic function
parameters were also observed in NASH patients without a his-
tory of CVDs.% Another study revealed that NASH patients with
liver cirrhosis had an increased prevalence of diastolic dysfunction
compared with patients with other causes of liver cirrhosis.®® Dias-
tolic dysfunction in NASH patients leads to a decrease in physical
performance. The severity of these disorders correlates with the LF
stage.’® In a study by Lee et al.?® including T2DM patients aged
>50 years, participants with NAFLD had changes in left ventricu-
lar structure and diastolic dysfunction compared to non-NAFLD
patients. Advanced LF significantly correlated with left ventricular
diastolic dysfunction after correction for cardiovascular risk fac-
tors, especially in patients without insulin resistance. Although
NASH is accompanied by a higher frequency of left ventricular di-
astolic dysfunction, this does not affect the immediate post-trans-
plant outcome or 30-day mortality from all causes.” Sunbul et
al.*" have shown that NAFLD patients with LF have significantly
lower right ventricular function compared to patients without LF.
They used the NASH CRN histological scoring system as an inde-
pendent predictor. It turned out that the NASH CRN score >5 was
associated with lower right ventricular global longitudinal strain.
The NASH CRN score inversely correlated with right ventricular
global longitudinal strain. Patients with impaired right ventricu-
lar global longitudinal strain had a higher NASH CRN score than
did those with normal right ventricular global longitudinal strain.
Cardiac structural and functional abnormalities contribute to the
development of heart failure, which, in NAFLD, occurs with a pre-
served ejection fraction. The relationship between more advanced
heart failure and LF stage was evident in NAFLD patients. Left
atrial dilatation and more pronounced diastolic dysfunction were
observed in NAFLD patients with advanced LF.%8

Cardiac arrhythmias

Atrial fibrillation is an extremely important social problem due to
its large prevalence and high morbidity and mortality rates.® Atrial
fibrillation often occurs in NAFLD patients, in whom it usually
has a permanent (chronic) form.” In a study by Whitsett et al.,”!
atrial fibrillation was found to be twice as common in NASH pa-
tients than in the general population. An Oulu Project Elucidating
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the Risk of Atherosclerosis study revealed a link between atrial
fibrillation and liver stiffness measured by transient elastography
in elderly NAFLD patients.*! A number of studies have shown an
independent association between atrial fibrillation and advanced
LF assessed by NFS and FIB-4 score in NAFLD patients.**#3

Cardiac conduction defects

Cardiac conduction defects are a well-established risk factor for
general and cardiac mortality in NAFLD patients.”? In a study by
Mantovani et al.,* persistent heart block was found to be most
common in NAFLD patients with T2DM in the presence of ad-
vanced LF, assessed by the FIB-4 score.

Conclusions

NAFLD occupies a leading position among liver diseases world-
wide. Given that cardiovascular disorders are the most significant
cause of unfavorable outcomes in NAFLD patients, identifying
cardiovascular risk factors is an important public health issue.
There is much evidence that LF can considerably increase morbid-
ity and mortality from CVDs in NAFLD patients. Early diagnosis
of LF will allow to stratify NAFLD patients by cardiovascular risk
groups and thereby determine the most optimal therapeutic inter-
ventions.
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Abstract

Obesity is a global health burden and is closely associated with severe chronic co-morbidities, which remain the leading causes of
death. Significant progress has been made in the treatment of hypertension, diabetes, and hyperlipidemia over the last half-centu-
ry. However, advancements in the management of obesity have been slow, with some medications exhibiting inadequate efficacy
and dangerous side effects. Improved understanding of the gut-brain axis has inspired the pursuit of novel medications aiming
to provide sustainable and safe weight loss. Current evidence-based practices for obesity management involve multi-modal ap-
proaches, including lifestyle modification, mechanical gastric restriction, modulation in the secretion of multiple gut hormones,
alteration in the composition and secretion of bile acids, and alterations of the gut microbiome. Each physician is responsible for
recognizing obesity as a disease and assisting patients in appropriate management based on strong evidence and a good safety
profile, aligned with the patient’s goals. Through this review, we aim to inform the readers of recent approaches for managing

obesity and comparing their beneficial effects and efficacy on obesity and its long-term co-morbidities.

Introduction

The relationship between diet and chronic diseases such as hyper-
tension, diabetes, colon cancer, and obesity has undergone exten-
sive investigation, supported by a large number of data, indicating
a causal relationship between them. Globally, mortality has shown
strong associations with diets low in whole grains, high in sodium,
and low in fruits.! Recent increases in obesity rates have been at-
tributed to unhealthy eating habits and food choices leading to ex-
cessive energy intake.? Many studies have recognized the positive
correlations between energy density, weight, and other markers
of metabolic syndrome.?> The problem of obesity or overweight
accounts for two-thirds of the U.S. population. Obesity, a global
health burden, is associated with comorbidities, such as diabetes
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mellitus, coronary artery disease, hypertension, and other systemic
health issues, which are the leading causes of death.* In the modern
era, obesity is typically defined as a body mass index (BMI) >30
kg/m?, while a BMI value of 25-29.9 kg/m? is classified as over-
weight. Dietary factors, lifestyle, genetics, and environmental fac-
tors significantly contribute to obesity. A recent analysis revealed a
near doubling of worldwide obesity prevalence since 1985, affect-
ing half a billion people worldwide, and accounting for 4 million
deaths annually worldwide.’ However, the awareness of available
therapeutic options remains low, prompting us to provide insights
into these options through this article.

Obesity has significant effects on the gastrointestinal system.
It contributes to esophageal diseases through both mechanical and
humoral factors, with proinflammatory cytokines playing a cru-
cial role in other digestive diseases.® Munch et al. demonstrated
in an experiment on L2-IL1B mice (a transgenic mouse model of
Barrett’s esophagus) that a high-fat diet accelerated esophageal
dysplasia by enhancing local pro-inflammatory immune responses
and altering intestinal microbiota, irrespective of body weight.”
Lower esophageal sphincter abnormalities, increased risk of hiatal
hernia, and increased intragastric pressure are other mechanical
causes of obesity directly influencing Barrett’s esophagus and ad-
enocarcinoma.® Obesity is also an important risk factor for colo-
rectal adenoma and cancer. Several factors contribute to the in-
creased risk of colon cancer in individuals with obesity, including
alterations in systemic growth factors, visceral adipose tissue, the
microbiome, bile acids, inflammation, and a diet rich in fat, sugar,

© 2024 The Author(s). This article has been published under the terms of Creative Commons Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0), which
permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided. “This article has been published
in Journal of Translational Gastroenterology at https://doi.org/10.14218/JTG.2023.00040 and can also be viewed on the Journal’s website
at https://www.xiahepublishing.com/journal/jtg”.
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Outcome efficacy: Semaglutide vs
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Fig. 1. Outcome efficacy of semaglutide and liraglutide. The left graph shows the mean percent weight loss (%WL) at week 68 by comparing weekly sub-
cutaneous semaglutide to daily subcutaneous liraglutide. The right graph shows the mean percent weight loss (%WL) at week 26 by comparing daily oral

semaglutide to daily subcutaneous liraglutide. %WL, percent weight loss.

high fructose corn syrup, or low vitamin D.® Studies have indicated
that visceral adipose tissue may lead to higher circulating levels of
insulin growth factor through worsening insulin resistance, there-
by increasing the risk of carcinogenesis.® Furthermore, a high-fat
diet induces colon and intestinal tumorigenesis by promoting the
proliferation of intestinal stem cells.®

Multiple modalities, including lifestyle modification, mechani-
cal gastric restriction, modulation in the secretion of multiple gut
hormones, alteration in the composition and secretion of bile acids,
and alterations of the gut microbiome, have been explored in obesity
management.'? Previous studies have primarily focused on pharma-
ceutical therapies, including combination therapies using different
medical or interventional therapies with multiple targets for treating
obesity.!" Recently, bariatric surgical procedures have been exten-
sively adopted and demonstrated efficacy in treating obesity.'? As
the prevalence of obesity increases, novel therapeutic approaches
such as probiotics,'>!* laparoscopic surgery,'s topical lotions and
subcutaneous medication,'®17 transcatheter bariatric embolization, '8
low insulin method,!® or gene therapy?’ have gained attention.

This comprehensive review aims to consolidate the recently
applied medical, endoscopic, and surgical approaches for manag-
ing obesity and compare their beneficial effects and efficacy on
obesity and its long-term comorbidities. We particularly aim to
highlight newer experimental techniques for the management of
obesity, including transcatheter bariatric embolization, intragastric
balloon therapies, primary obesity surgery endoluminal proce-
dures, and the Endobarrier procedure, which have shown promise
in recent studies.

Medical management

Glucagon-like peptide 1 agonist
Long-acting glucagon-like peptide 1 (GLP-1) agonists such as

DOI: 10.14218/JTG.2023.00040 | Volume 2 Issue 1, March 2024

semaglutide, liraglutide, and tirzepatide are currently available in
the U.S. for the management of obesity, especially in patients with
impaired glucose tolerance.?!?> The primary outcome of a recent
study indicated that the mean weight loss with weekly subcuta-
neous injections of semaglutide 2.4 mg was 15.4% at week 68,
compared to a mean weight loss of 6.4% in those receiving daily
subcutaneous liraglutide 3.0 mg.?> Another analysis compared
daily oral semaglutide 14 mg with daily subcutaneous liraglutide
1.8 mg for obesity management in diabetic patients whose gly-
cemic indicators were stable on metformin. The outcomes indi-
cated a placebo-subtracted average weight loss of 4.2% with oral
semaglutide compared to a placebo-subtracted mean weight loss of
2.7% with subcutaneous liraglutide at the end of the 26" week.2*
Thus, whether administered orally or subcutaneously, semaglutide
appears to be superior to subcutaneous liraglutide for the manage-
ment of obesity. Figure 1 shows a comparison of the results from
these two studies. Tirzepatide is a newer dual glucose-dependent
insulinotropic polypeptide and GLP-1 receptor agonist.?S Although
trials comparing the efficacy of tirzepatide and other GLP-1 are
still underway, recent studies have demonstrated encouraging out-
comes. An open-label, 40-week, phase III randomized trial com-
paring weekly tirzepatide and semaglutide in type 2 diabetes mel-
litus patients indicated that reductions in body weight were greater
and statistically significant with tirzepatide than with semaglutide
in the secondary endpoints.?> A more recent phase III placebo-
controlled, double-blind, randomized trial comparing percentage
weight loss for three different doses of weekly tirzepatide showed
a significant and sustained reduction in weight, with a higher per-
centage of weight loss observed with higher doses.?®

Orlistat

Orlistat is a reversible inhibitor of gastrointestinal lipases, tradi-
tionally employed for obesity management.?!?? Orlistat, combined
with lifestyle changes, contributed to a reduction in weight by 5.8
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kg compared to 3.3 kg with placebo over 4 years.?” A 37.3% reduc-
tion in the risk of diabetes mellitus was observed in patients treated
with orlistat vs. placebo. Orlistat has an excellent long-term safety
profile, and serious adverse events are rare.?® Despite this, a high
rate of gastrointestinal side effects such as oily stools, diarrhea,
abdominal pain, and fecal spotting, as well as interactions with
several drugs affecting their bioavailability and effectiveness, lim-
its adherence and makes it a less popular option.?’

Lorcaserin

Lorcaserin is a serotonin 2C receptor agonist. Research indicates
that it contributes to a reduction in body weight of 5.8 kg in 47.5%
of the subjects over a year, compared to a weight reduction of 2.2 kg
in 20.3% of the subjects in the placebo group. Weight loss was sus-
tained in a significantly greater number of patients in the Lorcaserin
group during the second year.?® The CAMELLIA-TIMI 61 trial
(Cardiovascular and Metabolic Effects of Lorcaserin in Overweight
and Obese Patients—Thrombolysis in Myocardial Infarction 61) in-
vestigated the long-term cardiovascular safety and efficacy of lorca-
serin in obese or overweight patients with cardiovascular disease or
risk factors. The rates of several cardiovascular and metabolic risk
factors, such as blood pressure, heart rate, low density lipoprotein,
and triglycerides were slightly lower in the intervention group than
in the placebo group. At one year, the rate of cardiovascular events
was similar in both groups.3! A safety review of this study also iden-
tified a potential signal for increased cancer incidence, however, the
study was not powered for cancer end-points.’? A review conducted
by the Food and Drug Administration (FDA) in 2020, based on a
large post-marketing clinical trial revealed a higher frequency of
cancer diagnosis for 13 types of cancer, including colorectal cancer,
pancreatic cancer, and lung cancer, in the lorcaserin group compared
to the placebo group.3* Consequently, the FDA requested manufac-
turers to voluntarily withdraw their products from the market due to
these safety concerns.

Combination therapies

Combination pharmacotherapy is increasingly being adopted
worldwide for obesity treatment due to its heightened efficacy
and beneficial outcomes.?! The combined implication of pram-
lintide and phentermine was found to be eight times more effica-
cious than pramlintide monotherapy in reducing human weight.
This combined pharmacotherapy resulted in a weight reduction
of approximately 10.5%, compared to 2.5% for pramlintide alone
after 24 weeks.!"! Exenatide once weekly, combined with daily
dapagliflozin, induced greater weight reduction than either of
the individual therapies, with results sustained over a year, sug-
gesting long-term sustainable benefits in weight reduction.!" The
combination of phentermine and topiramate resulted in an overall
placebo-subtracted weight loss of 3.5% at low doses and 9.3% at
higher doses. Major studies leading to the approval of naltrexone/
bupropion reported an average placebo-subtracted weight loss of
3.7% at a dose of 16/360 mg, and 4.8% at a dose of 32/360 mg.3?
Similarly, co-infusion of sub-anorectic doses of GLP-1 and gluca-
gon demonstrated a 13% reduction in food intake* while simulta-
neously increasing energy expenditure, thus improving obesity and
glycemia.’® Therefore, combination therapies are not only more
efficacious in treating obesity but also have more long-lasting ef-
fects than monotherapies. Some of the commonly prescribed medi-
cations for the management of obesity are summarized in Table 1.

Probiotics

Probiotics can modify gut microbiota and have been shown to
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contribute to body weight reduction in experimental animal stud-
ies. In an 8-week-old Apoe knock-out mouse model, the group of
mice receiving Lactobacillus reuteri strain ATCC PTA 4659 in-
dicated a significant reduction in body weight, adipose, and liver
weight, and decreased serum insulin levels, attributing to increased
B-oxidation.'® Another study demonstrated that the oral adminis-
tration of Saccharomyces boulardii over 4 weeks resulted in a 15%
reduction in body weight gain, accompanied by a significant de-
crease in whole-body fat mass, without altering food intake in a
mouse model."* Additionally, supplementation with S. boulardii
and superoxide dismutase for 60 days in obese population led to
significant weight loss and fat loss, while preserving fat-free mass
in a randomized clinical trial (RCT).3¢

Herbal supplements

The use of herbal weight loss supplements has recently attracted
increased amounts of attention due to the increasing prevalence of
obesity. Garcinia cambogia supplements containing hydroxycitric
acid are marketed for weight loss;3” however, the FDA has recently
issued a warning following post-marketing surveillance indicat-
ing an increased risk of hepatotoxicity associated with garcinia
cambogia. Conjugated linoleic acid supplementation has shown
limited evidence for weight loss, but studies have demonstrated
an increase in oxidative stress and insulin resistance with regular
consumption of conjugated linoleic acid, which limits its utiliza-
tion.3® L-carnitine, an amino acid naturally produced in the liver
and kidneys, is thought to aid in managing obesity through its ef-
fects on glycemic control and lipid-lowering activities. However,
analyses have shown that it produces only a moderate effect on
weight loss.?

Other novel medical approaches

There are several other promising medical approaches for the man-
agement of obesity. The administration of transforming growth
factor beta superfamily ligands, including GDF15 and MIC-1, has
been shown to reduce body weight and food intake in mouse and
human models, respectively, making them advantageous in the
treatment of obesity.***! Similarly, twice-daily topical application
of a lotion containing aminophylline, caffeine, yohimbe, L-carni-
tine, and gotu kola, combined with exercise and restricted calorie
intake for 28 days effectively reduced body mass, fat mass, and
circumference in the treated area.'®

Surgical management

The surgical approach for managing obesity has long been used to
achieve sustainable results, especially in obese patients resistant to
pharmacotherapy. Bariatric procedures are widely employed surgi-
cal interventions for treating obesity and its associated morbidi-
ties, consistently yielding desirable outcomes. Bariatric surgeries
are considered the treatment of choice for patients with a BMI >40
kg/m2 or BMI >35 kg/m2 with severe associated comorbidities.!?

Two major surgical approaches are laparoscopic sleeve gastrec-
tomy (LSG) and laparoscopic Roux-en-Y gastric bypass (LRYGB).
Figure 2 illustrates a compilation of studies comparing the post-
surgical benefits and metabolic effects of LSG and LRYGB. Pe-
terli et al. compared the post-surgical effects of LSG and LRYGB
over 3 years in an RCT.'S The study concluded that both LSG and
LRYGB groups demonstrated statistically equal efficacy in re-
ducing excessive body mass index and improving quality of life
up to 3 years after surgery. After 3 years, the improvement in co-
morbidities was similar for both groups, except for dyslipidemia
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Table 1. Commonly prescribed medications for obesity management
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Generic

Drug Class Doses Comments
Names
Glucagon-like Semaglutide Start with 0.25 mg subcutaneous Monitor for eye complications in patients
Peptide 1 agonist (SC) once a week. Increase the with Diabetic retinopathy.
dose every 4 weeks by 0.25 mg till
a maximum of 2.4 mg is reached.
Liraglutide Start with 0.6 mg SC daily and
increase at weekly intervals
by 0.6 until maximum 3 mg.
Tirzepatide Start with 2.5 mg weekly Currently approved for type 2 diabetes
and increase by 2.5 every 4 and obesity management.
weeks to maximum 15 mg.
All: Hypoglycemia if co-administered with other
diabetes medications. Rarely reported: pancreatitis.
Contraindicated in pregnancy and patients with a
family history of medullary thyroid cancer (based on
murine models) or multiple endocrine neoplasia.
Gastric/pancreatic Orlistat 120 mg TID with fat containing Good safety profile for long-term use. Gl

lipase inhibitors

Combination
Therapies

Noradrenergic
sympathomimetics

Phentermine
and
Topiramate

Naltrexone
and bupropion

phentermine

meals (60 mg TID for those who
cannot tolerate 120 mg).

Start with 3.75 phentermine and
23 mg topiramate daily for 14
days, increase by 3.75/23 for 12
weeks. Then increase based on
response to a maximum of 15/92.

Start with 8 mg naltrexone and 90
mg bupropion daily (1 combination
pill). Increase by 1 pill every week
to a maximum of 4 tablets daily.

15 mg to 37.5 mg daily.

side effects could be the limiting factor.

Phentermine has abuse potential. Side effects include
dry mouth, paresthesia, cognitive deficits, anxiety,
insomnia, etc. Contraindicated in pregnancy (note
topiramate is teratogenic), hyperthyroidism, glaucoma,
and co-administration with MAO inhibitors.

Nausea, vomiting, insomnia, dry mouth, increase in
blood pressure. Contraindicated in poorly controlled
hypertension, seizure disorder, opioid use disorder,
opioid agonist therapy, pregnancy, and breastfeeding.

Several side effects and usually avoided
unless it is short term only (<12 weeks).

MAO, monoamine oxidase; SC, subcutaneous; TID, ter in die.

Mean %loss
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Outcome data: LSG vs LRYGB

At 3years (%EBMIL)

At 7 years (%EWL)

ELSG mLRYGB

Fig. 2. Outcomes of laparoscopic sleeve gastrectomy (LSG) and laparoscopic Roux-en-Y gastric bypass (LRYGB). The left graph shows the mean percent excess
BMI loss (%EBMIL) between LSG and LRYGB at 3 years. The right graph displays the mean percent excess weight loss (%EWL) between LSG and LRYGB at 7 years.
%EBMIL, percent excess body mass index loss; %EWL, excess weight loss; LRYGB, laparoscopic Roux-en-Y gastric bypass; LSG, laparoscopic sleeve gastrectomy.
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and gastroesophageal reflux disease, which responded more ef-
fectively to LRYGB treatment. Gronroos et al. performed another
RCT comparing the post-surgical effects of LSG and LRYGB over
a 7-year period.*? The results indicated that in a follow-up after 7
years, the mean percentage of excess weight loss was higher after
LRYGB (55%) than after LSG (47%). Although LRYGB resulted
in greater weight loss, it was associated with a 4.6% higher total
morbidity rate. The long-term quality of life was similar after both
procedures.

In a study comparing the metabolic effects of LSG and LRYGB,
the number of significantly altered lipid metabolites was higher
following LSG than LRYGB, mainly due to anatomical differences
between the two surgeries and factors related to gut microbiota.*?
LSG was associated with alterations in amino acid metabolism,
while LRYGB was associated with changes in bile acids. Studies
conducted on triglyceride-rich lipoproteins (TRL) 6 months after
surgery revealed that both TRL-apoB-100 and TRL-apoB-48 de-
clined after LSG due to decreased production rates of both lipopro-
teins and an increased fractional catabolic rate of TRL-apoB-100
only. In contrast, the TRL-apoB-48 level did not significantly de-
crease after LRYGB.**

Laparoscopic vertical banded gastroplasty is another bariatric
procedure effective in reducing body fat; however, it is less effica-
cious than LRYGB.*

Endoscopic management

As minimally invasive surgery is favored by patients, there has
been significant development in endoscopic weight reduction pro-
cedures and devices. The major endoscopic procedures currently
available are listed as follows:

Transcatheter bariatric embolization

Transcatheter bariatric embolization (TBE) uses a balloon micro-
catheter to occlude the left gastric artery, thereby promoting weight
loss. The LOSEIT study (The Lowering Weight in Severe Obesity
by Embolization of the Gastric Artery Trial) was a randomized
pilot study that established the proof-of-principle demonstrating
that TBE is well-tolerated and effective in weight reduction.!® In
the intention-to-treat population, total body weight loss was 7.4 kg
with TBE (6.4% reduction) compared to 3.0 kg with sham (2.8%
reduction) at 6 months after the procedure. Subjects treated with
TBE had significant improvements in physical function, self-es-
teem, and overall quality of life at 6 and 12 months.

Endoscopic sleeve gastroplasty

Endoscopic sleeve gastroplasty (ESG) is a minimally invasive pro-
cedure that effectively induces a reduction in body weight by de-
creasing the size of the gastric reservoir. Subjects who underwent
ESG experienced a significant reduction in excess body weight of
53% at 6 months.*® In a physiological analysis, there was a 59%
decrease in caloric intake to reach gastric fullness, along with de-
creased gastric emptying time for solids and increased insulin sen-
sitivity.

Percutaneous gastrostomy devices

In a recent RCT by Thompson ef al., an endoscopic device com-
prising an endoscopically placed percutaneous gastrostomy tube
and an external device to facilitate drainage was utilized. The study
demonstrated that 58.6% of participants in the intervention group
lost 25% of their excess body weight, compared to 15.3% of par-
ticipants in the control group. Notably, only 3.6% of the interven-
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tion group participants developed serious postoperative adverse
effects.’

Primary obesity surgery endoluminal procedure

The primary obesity surgery endoluminal (POSE) procedure is
an endoscopic incision procedure aimed to reduce the size of the
stomach and decrease hunger cravings. A recent study reported
that 79% of patients who underwent POSE procedures had a mean
percent excess weight loss of approximately 50% after 1 year, with
no development of any serious side effects.*

Endoluminal endoscopic gastric jejunal bypass sleeve

Gastro-duodeno-jejunal bypass sleeve is a novel technique that
serves as an alternative to bariatric surgery in patients with morbid
obesity. It consists of a 120 cm long sleeve device, placed endo-
scopically to create an endoluminal bypass tract from the lower
gastroesophageal junction to the jejunum. A prospective trial
designed to study the effectiveness of endoluminal, endoscopic
gastric bypass sleeve implants in morbidly obese individuals con-
cluded that almost half of the participants experienced a mean per-
centage excess weight loss (EWL) of 54% after 12 months and
sustained a mean %EWL of 30% at the 14-month post-explant
follow-up, while the remaining required explantation or experi-
enced partial cuff detachment before completing 1 year.* This trial
demonstrated that the gastro-duodenal-jejunal bypass sleeve could
be an effective treatment option for the long-term management of
morbid obesity.

Intragastric balloon therapy

Intragastric balloon (IGB) therapy has become an attractive tool
for weight loss, owing to its sustained efficacy, low complication
rate, and broad application, extending to class I and II obesity.
This therapy involves a space-occupying device that alters gastric
emptying and gastrointestinal neurohumoral pathways, leading to
early satiety.>’ Several different types of IGBs are commercially
available in the U.S. Among patients with a BMI range of 30-40
kg/m?, IGB has shown superior outcomes in terms of weight loss
compared to lifestyle modification alone. IGBs lead to greater
weight loss at 6, 9, and 12 months after initial balloon placement;
however, the amount of weight loss decreases during each succes-
sive time-period.3! A pooled analysis of 7 RCTs revealed that the
percent total body weight loss (% TBWL) at the end of 6—8 months
was 7.4-14.9% for patients with IGB compared to 2.4-5.4% for
those receiving standard care.>

IGB use is associated with the improvement in various meta-
bolic parameters and medical conditions compared with nonin-
vasive measures for weight loss.5! IGB decreased the incidence
of metabolic syndrome from 34.8% (pre-IGB) to 11.6% at 12
months post-IGB removal. The incidences of type 2 diabetes mel-
litus, hypertriglyceridemia, hypercholesterolemia, and hyperten-
sion decreased from 32.6%, 37.7%, 33.4%, and 44.9% (pre-IGB)
to 21.3%, 17.4%, 18.9%, and 34.8% respectively at 12 months
post IGB removal.5> Among patients undergoing bio-enteric IGB
placement, the prevalence of hypertension, diabetes, hypercho-
lesterolemia, and osteoarthropathy decreased from 29%, 15%,
32%, and 25% (pre-IGB), respectively, to 16%, 10%, 21%, and
13% at 3 years post-IGB removal.>? Device intolerance (sense of
fullness) and symptomatic intolerance (including epigastric pain,
reflux, nausea, or emesis) remain the primary reasons for early
IGB removal, occurring in approximately 9.4% of patients. More
serious adverse events, such as gastrointestinal perforation (0.3%),
esophageal mucosal injury (0.8%), gastric ulcer/bleeding (0.76%),
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and gastric outlet/bowel obstruction (0.12%), are relatively rare.
No mortality was reported during the 6-8 month period following
balloon placement.!

Endoluminal duodenal-jejunal bypass liner (endobarrier)
Procedure

The application of endoluminal duodenal-jejunal bypass liner
(DJBL), commonly referred to as endobarrier, has demonstrated
effectiveness in managing chronic morbid obesity.>* In patients
with class I obesity and long-term type 2 diabetes mellitus, the
DJBL procedure resulted in a 15% reduction in total body weight
and a 0.6% reduction in HblAc at 12 months. Only 9.5% of the
patients with the DJBL procedure experienced major side effects,
including severe abdominal pain in one patient and acute chole-
cystitis with duodenal fistula due to bulbar transmural penetration
and gall bladder impaction by one of the anchors.3* In an RCT for
DJBL in patients with type 2 diabetes mellitus and obesity, 24%
of the patients in the DJBL group achieved a >15% reduction in
body weight compared to 4% in the control group at 12 months.
DJBL demonstrated superior reductions in serum cholesterol, sys-
tolic blood pressure, and alanine transaminase levels at 12 months,
while there was no significant difference in glycemic control.

Duodenal mucosal resurfacing

Duodenal mucosal resurfacing (DMR) is a minimally invasive
endoscopic procedure for circumferential hydrothermal ablation.
DMR, particularly when combined with hypocaloric intake, has
long-lasting efficacy in controlling diabetes and reducing both in-
tramyocellular and intrahepatocellular lipids, while favoring the
mobilization of abdominal fat and improving glycemia.50

Conclusions

Obesity has been a primary target for medical and surgical therapy.
Various monotherapy options, such as GLP-1 agonists, have shown
success in reducing weight. The combination pharmacotherapies
have demonstrated significantly greater efficacy in weight loss
compared to the individual drugs. Bariatric surgical methods pro-
vide more effective and long-lasting outcomes and carry a rela-
tively higher risk of complications, which limits their widespread
adoption. Several novel endoscopic devices and procedures are
promising due to their satisfactory results, relatively lower cost,
and lower risk. Further studies assessing the safety, effectiveness,
and sustainability of these novel endoscopic techniques are war-
ranted.
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Abstract

The correlation between gut, secreted metabolites, and hepatic diseases has strengthened over the last decade. Interactions of
intestinal permeability, gut microbes, and derived metabolites influence the development and progression of nonalcoholic fatty
liver disease (NAFLD), a prevalent disease that affects more than 30% of the global population. NAFLD is now called metabolic
dysfunction-associated steatotic liver disease (MASLD) to better reflect the disease process. Here, we describe mechanisms of
NAFLD development, the role of gut bacteria, gut metabolites, interventions for diagnosis, and the prognosis of NAFLD. We
discuss new paradigms that challenge the conventional, addressing disease etiology and translational approaches in a new
dimension. Previous studies shed light on intricate relationships of the gut microbiome with the liver, or the gut-liver axis.
Bidirectional communication between the gut and the liver involves exchange of metabolites, immune signaling, and inflam-
matory responses that has potential for novel NAFLD/nonalcoholic steatohepatitis (NASH) treatments. In this review, we
propose exploring functional metagenomics to develop NAFLD diagnostic methods and risk assessment. The prospects of
genetic engineering, fecal transplants, and specialized diet as targets of novel therapeutic regimes to combat NAFLD/NASH
are discussed. Changes in lifestyle and diet in the population, combined with genetic predisposition, have led to an increasing
number of cases of NAFLD. The microbiome responds to diet, exercise, and the environment, and can modulate NAFLD in
cases with surgical impediments. It is thus vital to explore its emerging roles in human healthcare and not only liver disease.

making it a worldwide burden.*® The disease encompasses a wide
range of liver conditions, such as simple steatosis that progresses
to nonalcoholic steatohepatitis (NASH), severe liver fibrosis, liv-
er cirrhosis, and hepatocellular carcinoma (HCC).® Western and
Eastern nations are predicted to have a two- to three-fold increase
in the burden of end-stage liver disease by 2030.5¢ Recently, us-
ing a two-stage Delphi consensus, NAFLD has been renamed
metabolic dysfunction-associated steatotic liver disease (MA-
SLD), which refers to a chronic and progressive condition that
affects 30—40% of the global population and is strongly associated
with features of metabolic syndrome, including obesity and type
2 diabetes mellitus.” MASLD is caused by accumulation of fat

Introduction

In 1980, Dr. Jiirgen Ludwig was the first to describe nonalcoholic
fatty liver disease (NAFLD).! As a result of severe changes in
our lifestyles, NAFLD has become the most common liver condi-
tion in China and other parts of the world, with no established
therapeutic interventions but only prevention in the form of life-
style and nutrition adjustments.??* Clinical symptoms of NAFLD
are expected to impact around 25% of the population worldwide,
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in the liver and includes a range of disease states, from isolated
lipid accumulation or steatosis (i.c. MASL), and its active inflam-
matory form, metabolic dysfunction-associated steatohepatitis.®
MASLD includes patients with hepatic steatosis along with car-
diometabolic risk.

As mentioned above, many NAFLD patients have metabolic is-
sues that further increase their risk of cardiovascular disease, dia-
betes, chronic renal disease, and cancer, which severely degrade
health.” The mechanisms underlying the progression of MASLD
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permits noncommercial unrestricted use, distribution, and reproduction in any medium, provided that the following statement is provided. “This article has been published
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Fig. 1. lllustration of common risks and the prevention of NAFLD. NAFLD, nonalcoholic fatty liver disease.

to NASH and other severe liver disorders are largely unknown.
This review explores various avenues to understand the complex
interplay between intestinal microbiota and NAFLD progression.

The presence of the liver in the foregut in early development
demonstrates that the gut and the liver are connected fundamen-
tally by development stages.”!? Patients with NAFLD have higher
levels of intestinal permeability, and it is linked with an increase in
bacterial population inside the intestines.!"»'? Considering the high
prevalence and morbidity of NAFLD, a better understanding of the
underlying pathogenic mechanisms is essential for disease man-
agement.'®* This review aims to summarize significant findings
on the association of the intestinal microbiota, gut-liver axis, cross-
talk, and balance within the gut microbiota that in turn maintains
intestinal permeability and tissue homeostasis. The goal is to pre-
sent an overview depicting the impact of the intestinal microbiota
on NAFLD development. The review describes recent advances in
precision medicine offered by creative and emerging ideas from
fecal microbiota transplantation (FMT), prebiotics, synbiotics, and
probiotics. This review focuses on information that can help an-
swer questions of the effects of alterations in microbiota composi-
tion and microbial function in NAFLD, molecular mechanisms un-
derlying disease pathogenesis, comparative assessment of widely
used diagnostic biochemical and biophysical methods, the causal
relationship of gut microenvironment and progression of NAFLD,
and laying the foundation for gut microbiota-targeted therapeutic
regimes in NAFLD/NASH treatment. Previous reviews have dis-
cussed the role of the gut-brain axis in the onset of NAFLD, our
review is focused more on the molecular mechanism of this asso-
ciation and investigating the key mediators of the process.
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NAFLD is affiliated with a wide variety of liver disorders caused
by lipid deposits in the hepatocytes with no causal connection to
alcoholic drinks and/or drug consumption, as well as acquired or
hereditary metabolic abnormalities that increase the risk of cirrho-
sis and HCC.'51¢ NAFLD is defined clinico-pathologically as the
deposition of lipids in > 5% of hepatocytes and the exclusion of
other sources of fat accumulation (Fig. 1).17 This illness is linked to
diabetes, cardiovascular disease, stroke, and liver damage. It is an
implication of the hepatic metabolic syndrome that is supported by
a two-hit approach in pathogenesis, as suggested and evidenced by
the role of lipid peroxidation. The first hit is directed at the progres-
sion of hepatic steatosis by causing accumulation of triglycerides in
hepatocytes and facilitates a second hit directed at minor and major
inflammation, fibrosis, and lipoapoptosis.!®1® Although the intra-
hepatic etiology is still under investigation and the interactions of
immune responses are not clear, many potential pathophysiological
mechanisms are proposed. It is well-established that an inflamma-
tory cascade is activated by hepatocytic injury caused by oxidative
stress and mitochondrial dysfunction. It further activates hepatic
stellate cells, and infiltration of immune cells occurs as a down-
stream consequence that results in NASH.?? Its prevalence is linked
to obesity, insulin resistance, hypertension, hyperglycemia, and hy-
perlipidemia.?! Insulin resistance and obesity contribute to chronic
inflammation, NASH, and altered lipid metabolism, all of which
contribute to procarcinogenic circumstances that promote HCC for-
mation, the fifth most frequent cancer and the leading cause of death
globally.”? Type 2 diabetes occurrence signifies faster progression
of NAFLD to NASH, advanced fibrosis, or cirrhosis, explaining
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Table 1. Available diagnostic tools for detecting NAFLD
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S. no. Detection method Advantage Disadvantage Reference
1. Metagenomics and metabolomics  Stool specimens, easy Unsatisfactory results from 26
collection, noninvasive tool long-term analysis
in the differential diagnosis
2. Biopsy/ histopathology Histological spectrum Invasive, potentially harmful, sampling 27-29
differentiating steatosis error, expensive, extreme cases
and fibrosis lead to morbidity and mortality
3. Liver enzymes and related Early detection of NAFLD, Not sensitive for NAFLD diagnosis, 30,31

scoring systems. FIB-4 index,
NFS(NAFLD fibrosis score), NASH
test, Fibro test, Steato test

4. Liver ultrasound or
ultrasonography

5. Magnetic resonance imaging,
elastography, and magnetic
resonance spectroscopy

6. Magnetic resonance imaging
proton-density fat traction

7. Computed tomography

ability to grade the
diseases into stages,
better pathogenesis

Noninvasive, time-
saving, well tolerated

Sufficient sensitivity, specifies
the stages of the disease

More sensitive than liver
histology, early detection

Sensitive techniques, easier
quantification of steatosis

validation required

Insensitive, operator dependent, 11
reliably diagnose NAFLD only if steatosis

is >33%, less accuracy in patients of

obesity and coexistent renal disease

Limited availability, needs expertise 25,32
prescription, difficult data collection,
requires spectral analysis

Unable to assess liver inflammation, 33,34
ballooning, or the resolution of NASH

Radiation exposure, high 35
cost, limited accuracy

NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.

why its treatment might prove beneficial for lowering the risks of
NAFLD/NASH.? 1t is further reported that extra-hepatic cancers
such as lung, breast, gynecological, or urinary system cancer are
linked with NAFLD prevalence in large cohorts. Yet, the mechanism
is not yet deciphered.?* That may be because obesity and diabetes
are synergistic with fatty liver pathogenesis in harming the immune
system and in hindering cell signaling and affecting apoptosis, the
cell cycle, and proliferation.

NAFLD nomenclature is now updated and associated to link
to a state of generalized metabolic disarrangement and is there-
fore renamed to MASLD as a more appropriate term according
to its multisystem and multifactorial characteristics, based on
proven data from in vitro and in vivo research that relate NAFLD
to metabolic dysfunction.?s This undefined set of adverse condi-
tions is characterized by hepatocellular ballooning, an increase
in Mallory—Denk bodies and inflammation, glycogenated nuclei,
lipogranulomas, and acidophil bodies, as indicated in Takahashi’s
histological research.?® Clinical manifestations include high serum
triglyceride, low serum high-density lipoprotein, and high ami-
notransferase, gamma-glutamyl transferase,?’ and total bile acid
(BA) levels.?® However, the enzyme activities may provide a false
indication for clinical conduct; thus, liver biopsy has been deemed
areliable yet invasive approach for diagnosing the stages of steato-
sis and fibrosis. Ultrasound can be used as a standardized method
for observing the development of simple steatosis to NASH but
cannot be used to investigate occurrence.' Noninvasive tests for
fibrosis, steatosis, and steatohepatitis, such as the Fibro-Test, Stea-
to-Test, Nash-Test, and Acti-Test, are also in extensive use.?” How-
ever, these tests are neither sophisticated nor completely reliable.
Among studies of total antioxidant capacity, products of oxidative
damage including total oxidant status and malondialdehyde, and
DNA/RNA oxidative damage in human serum samples, research-
ers reported that advanced glycation end products were a potential
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noninvasive biomarker of NAFLD.?® Magnetic resonance imaging
and magnetic resonance elastography have been used for nonin-
vasive quantitative assessment of hepatic steatosis and fibrosis in
NAFLD,3%3! but more advancement in these imaging modalities is
needed for future prospects. As a result, noninvasive approaches
for early identification and treatment of progressive fibrosis are
required. Table 1 depicts the various diagnostic tools available for
detecting liver disease.!!?5-35

Various mechanisms underlying development of NAFLD

The cellular and immunological mechanisms underlying the de-
velopment of NAFLD toward NASH might include endoplasmic
reticulum stress,** mitochondrial dysfunction,®® lipotoxicity, and
the release of pro-inflammatory cytokines responsible for liver in-
flammation, such as TNF-a, interleukin (IL)-6, leptin, and resistin
in enhanced amounts and decreased secretion of adiponectin.3435
The molecular insights primarily suggest that the root causes are
increase in fat supply or excessive adipose lipolysis as well as a
reduction in fat export such as very low-density lipoprotein, a de-
crease in free fatty beta-oxidation and elevation in de novo lipo-
genesis, which leads to decreased insulin sensitivity, the most com-
mon manifestation of NAFLD.3¢

Effects of fatty acids (FAs)

The majority of fats are stored in hepatocytes as triglycerides,
while the remaining fats are stored as a combination of free fatty
acids (FFAs), triglycerides, diacylglycerol, cholesterol esters, free
cholesterol, and phospholipids.?? Insulin acts as an antagonist for
lipolysis by inhibiting hormone-sensitive lipase, which controls
the release of FFAs from adipose tissue, resulting in the accumula-
tion of triglycerides.’#4? Saturated FAs induce hepatocyte apopto-
sis by mediating activation of the JNK pathway.*! TNF-o was pro-
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posed to play an important role in insulin resistance*? and was also
the first pro-inflammatory cytokine discovered in adipose tissue.
The sterol response element binding protein gene, which regulates
lipogenesis, is upregulated when dietary fat, particularly saturated
fat, is consumed.*> When the amount of calories in our diet ex-
ceeds our liver’s ability to export triglycerides, lipid droplets form
in parenchymal hepatocytes, signaling the start of NAFLD.*

Role of insulin

The progression of NAFLD to NASH involves insulin resistance
caused by aberrant insulin post-receptor signaling, which leads to
dysregulated lipolysis and excessive FA delivery to the liver. FFA
is a key player in NAFLD development via its role in inducement
of TNF expression mediated by an activation of nuclear factor-
kappa B.*5 The carbohydrate response element binding protein is
activated by fructose, independent of insulin, and promotes hepatic
steatosis. There is a more significant release of blood glucose by
the liver as a result of increased carbohydrate consumption and
decreased glucose uptake by insulin-resistant muscle and adipose
tissue because a high-carbohydrate diet activates several lipogenic
enzymes like acetyl CoA carboxylase and FA synthase, resulting in
hyperglycemia and other health-threatening symptoms.*

Association between mitochondrial dysfunction and NAFLD

Mitochondrial dysfunction is a central abnormality underlying the
progression from simple steatosis to steatohepatitis in NAFLD.3%
NAFLD is characterized by a metabolic infestation that often
includes large, swollen, multilamellar mitochondria, often with-
out cristae, and paracrystalline inclusion bodies.3**¢ FAs are
B-oxidized in mitochondria or esterified to be excreted as very low-
density lipoprotein or stored as lipid droplets.*” When mitochon-
drial activity is disrupted, ATP concentrations are reduced, which
causes FA metabolism to be downregulated, causing NAFLD pa-
tients to progress from steatosis to steatohepatitis.’>*8 Cell prolif-
eration induced in NAFLD and NASH in obesity-associated HCC
is promoted by elevated IL6 and TNF-B.32 Along with hepatic stel-
late cells, also known as multifunctional cells of the liver, which
are most closely related to immune cells, hepatic cells also play a
significant role in the production of fibrogenic stimuli and reactive
oxygen species,*” which might signify the induction of mitochon-
dria-mediated apoptosis.>” By creating myofibroblast-like cells in
the liver, reactive oxygen species’ damage of the liver gradually
leads to liver fibrosis. Adipokines and myokines regulate the ac-
tivation and fibrosis of hepatic stellate cells. Iron accumulation
catalyzes oxidative stress, which leads to fibrosis and eventually
NASH, in a process known as haemochromatosis.>! Along with
anatomical changes in the liver, NAFLD patients show narrowed
tight junctions and irregularly arranged microvilli, which depicts
a change in the alignment of intact tight junctions and extensive
microvilli in their duodenum. The structural backbone of the small
intestine, occludin proteins are present in far larger quantities in
healthy intestines than in NAFLD-affected counterparts.>?

Link between BAs and NAFLD

BAs have an essential role in cholesterol homeostasis, lipid me-
tabolism, and absorption of fat and fat-soluble vitamins. BA ho-
meostasis disruption is another important prognostic factor of
NAFLD.33 The progression of NAFLD to HCC can be accelerated
by intestinal BA deconjugation and hepatocyte exposure to more
toxic BAs. In studies, increased secondary BAs, taurine, and gly-
cine-conjugated BAs have been linked to steatohepatitis.5* Chang-
es in the pathway associated with the farnesoid X receptor, which
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plays a role in many important systems responsible for BA regula-
tion, glucose regulation, and lipid regulation can lead to imbal-
ances in energy balance, exacerbating inflammation and fibrosis.
Cholic acid, a secondary BA, has been shown in studies to protect
mice from hepatic lipogenesis by inhibiting sterol regulatory ele-
ment-binding protein 1 and its target genes.5> In human gallstone
patients, chenodeoxycholic acid administration lowers the produc-
tion of elevated hepatic very low-density lipoprotein and plasma
triglyceride levels. Obeticholic acid (6a-ethyl-chenodeoxycholic
acid), a semisynthetic form of chenodeoxycholic acid, has been
shown to be very protective in obese rats in Phase-2a and Phase-2b
trials. It helps reduce the risk of liver steatosis as well as fibro-
sis.5657 Intrahepatic accumulation of tauro-beta-muricholic acid, a
farnesoid X receptor nuclear receptor antagonist which is involved
in the regulation of BA, lipid, and glucose metabolism, showed
contribution in decreasing risk to NAFLD in antibiotic and tempo-
ral treated mice by inhibiting farnesoid X receptor signaling in the
intestine.*®5? Significant decreases in serum palmitoyl-, stearoyl-,
and oleoyl-lysophosphatidylcholine were detected in mice with
NASH.%

Gut-liver axis

The gut-liver axis is the bidirectional link between the gut, its bac-
teria, and the liver. The gut barrier is an integral secure system with
an army of tight junctional complexes. These goblet cells form the
mucus layer, Paneth cells that regulate antimicrobial defense, and a
network of innate and adaptive immune cells.%! It maintains home-
ostasis by interacting with nuclear receptors to control metabolic
activities and forming a feedback loop for BAs and antibodies via
the portal circulation between the liver and the gut.®? The gut mu-
cosal barrier comprising intestinal epithelial cells segregating gut
microbiota and host immune cells maintains gut homeostasis. The
balance and smooth maintenance are due to the integrated action of
the protective layer of defensins on the intraluminal surface, tight
junction proteins, and gut immune cells. If the mucosal membrane
is disrupted, the resulting altered intestinal permeability induces
local inflammation. Bacterial products, if translocated to various
cell types such as Kupfer cells, will initiate a fibrotic response re-
sulting in harmful effects in hepatocytes and to host immunity. It
also facilitates pathogen-associated molecular patterns, lipopoly-
saccharides, and microbiome-derived metabolites to enter the
liver through the portal circulation, triggering a pro-inflammatory
cascade that exacerbates hepatic inflammation.%? IL22 is reported
to regulate gut epithelial cells and, thereby, related immune func-
tions.%* As a result, lipopolysaccharide reduction and tight junction
restoration may be effective as a treatment for reducing NAFLD
and its development.S To gain insight into explaining the progres-
sion of NAFLD, alterations of gut bacteria abundance that are in-
volved in NAFLD pathogenesis.

Gut microbiota

The human gut microbiome contains 10100 trillion microorgan-
isms, mostly bacteria, which outweigh our human cells by a factor
of 10.96 Alpha-diversity (among samples) and beta-diversity (be-
tween samples) are two types of microbiome diversity (comparison
of samples from a given population).®” The microbiome’s bacterial
component has received the most attention so far. Bacteroidetes
and Firmicutes are the two most prevalent bacterial groups, and
Euryarchaeota is the most common of the Archaea.®® Nonbacterial
species, such as resident archaeal, fungal, and viral populations,
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are predicted to have roles in the microbiome, especially in their
interactions with other microbiome populations. Gut colonization
begins at birth, and a complex combination of dietary habits, eth-
nicity, and genetic variables influences microbiota composition. In
humans, the gut microbiota can define the host condition, whether
it is in homeostasis or illness. The gut microbiota interacts with the
immune system and actively absorbs food substances into the por-
tal and systemic circulation. Gut microbiota may affect NAFLD by
improving energy production, maintaining gut permeability, regu-
lating inflammation, modifying choline and BA metabolism, and
enhancing endogenous ethanol synthesis. As a result, it may influ-
ence the host, even if it is not present, by modulating immune cells
and the production of metabolites.®® Many studies have evaluated
various samples, such as fecal matter and animal tissues, to explore
the roles of different bacteria in the progression of NAFLD/NASH.

The clear relationship between microorganisms and the human
host makes the human a superorganism.”® This diversity that es-
tablishes a life-long, bidirectional, symbiotic association between
the gut and microorganisms is called the intestinal microbiota and
is favored by the food that passes through the tract, affecting the
integrity of the digestive tract and other linked systems.”! These
commensal bacteria help the host metabolize the dietary fibers that
cannot be processed due to a lack of enzymes.”? Veillonellaceae
and Rhinococcacea were selected as the most representative and
significant fibrosis-related bacterial taxa as shown in Table 2.%73-91

Gut metabolites: keystone component

Fermentation of dietary fiber and choline yields metabolites such
as short-chain fatty acids (SCFAs), including acetic acid, propion-
ate, butyrate, and succinate, hydrogen sulfide, and other proteo-
lytic metabolites. SCFAs mediate the regulatory effect on the gut
microbiota and host inflammatory responses, such as modulating
adiponectin and resistin transcriptional expression by modifying
DNA methylation in obese mice.?? Butyrate, the most potent anti-
inflammatory mediator, has been shown to be effective in reducing
local inflammation in the intestine and preventing the progression
of inflammatory responses to the systemic circulation.”® SCFAs
enter the liver directly through the portal vein, where they help
to reduce inflammation and steatosis. Though SCFAs regulate the
health of visceral adipose tissue and FA, lipid, and glucose metab-
olism, combining their advantages while preserving intestinal ho-
meostasis is complex, and the overall effect of SCFAs on NAFLD
etiology is yet unknown.*?

Colonic bacteria also ferment nondigestible carbohydrates to
SCFAs. SCFAs have been proposed to contribute to obesity and
liver steatosis as they provide approximately 10% of the daily
caloric consumption and may enhance nutrient absorption by
promoting the expression of glucagon-like peptides.®* However,
trimethylamine-N-oxide is only derived from gut microbial me-
tabolism.”® Trimethylamine-N-oxide, a gut microbe-generated me-
tabolite produced by the flavin monooxygenase 3 produced in the
liver, is detrimental to liver health. Cystathionine -synthase/cys-
tathionine y-lyase regulates trans-sulphuration and desulfuration
reactions in the liver, kidney, small intestine, pancreas, and brain.”*
The trans-sulphuration pathway is linked to the methionine cycle
through homocysteine, a nonprotein sulfur-containing amino acid.
Homocysteine is irreversibly metabolized via the trans-sulphura-
tion pathway to support endogenous cysteine synthesis. Cystathio-
nine B-synthase and cystathionine y-lyase catalyze alternative
desulphuration reactions in addition to the trans-sulphuration path-
way.” H,S is synthesized endogenously by these alternative reac-
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tions. Homocysteine and cysteine may catalyze these alternative
reactions.’®7” It has been shown that cystathionine B-synthase and
cystathionine y-lyase are highly expressed in hepatocytes, lead-
ing to their high expression in the parenchyma tissue.”® In patients
with NAFLD and its associated comorbidities, there are changes in
circulating homocysteine and hydrogen sulfide levels. Homocyst-
eine has been proposed as a risk marker for NAFLD.”?

Gut microbiota dysbiosis

In dysbiosis, the normal flora in the gut microbiome is disturbed,
resulting in increased microbial translocation and the development
of alcoholic liver disease. This affects the abundance of species
such as Streptococcus, Shuttleworthia, and Rothia.®" Small metab-
olites are produced by healthy gut microbiota, including SCFAs,
which provide energy to colonic epithelia. When the microbiota
starts to produce toxic metabolites that interfere with the gut-liver
axis and cause metabolic dysfunction, dysbiosis is confirmed, and
eventually, chronic disease development occurs. In patients with
NAFLD, decreased abundance of Faecalibacterium prausnitzii
and increased abundance of Proteobacteria, Escherichia coli,
and Enterobacteriaceae have been reported.?! NASH patients
had decreased fecal Bacteroidetes and increased Clostridium coc-
coides.3? At the same time, chronic alcohol consumption can cause
leaky gut and reduced gut bacterial diversity, which might be the
leading cause of alcoholic liver disease.®?

NAFLD patients had fewer Bacteroidetes, Ruminococcaceae,
Faecalibacterium prausnitzii, and more Prevotella, Porphyro-
mas, Lactobacillus, Escherichia, and Streptococcus bacteria than
healthy subjects.5%* However, increased levels of Veillonella,
Megasphaera, Dialister, Atopobium, and Prevotella have been ob-
served in cirrhotic patients. Several mechanisms may contribute
to NAFLD pathogenesis as a result of the influence of the gut mi-
crobiota influence, including (1) increased production and absorp-
tion of gut SCFAs, (2) altered dietary choline metabolism by the
microbiota, (3) altered BA pools by the microbiota, (4) increased
delivery of microbiota-derived ethanol to the liver, (5) gut perme-
ability alterations and endotoxin release, and (6) interaction be-
tween specific diet and microbiota.*” Chronic kidney disease may
aggravate NAFLD and associated metabolic disturbances through
multiple mechanisms, including altered intestinal barrier function
and microbiome composition.?5 3-phenylpropionate, a metabolite
generated by anaerobic bacteria, plays a crucial part in the pro-
cess.837 NASH development is linked to gut microbiome-derived
products of branched-chain and aromatic amino acid metabolism,
such as phenylacetic acid and 3-(4-hydroxyphenyl) lactate, which
are linked to insulin resistance.

Pathogen-associated molecular patterns develop when the gut
microbiota is out of equilibrium (dysbiosis). Dysbiosis is also
linked to increased exposure to bacterial compounds found in the
intestine, such as lipopolysaccharides. Hepatic cells have a variety
of cellular receptors that react to molecular pattern molecules (e.g.,
damage-associated molecular patterns and pathogen-associated
molecular patterns), which attract neutrophils, macrophages, and
other innate immune system components. Pathogen-associated
molecular patterns, elevated lipopolysaccharide levels, and dam-
age-associated molecular patterns activate Kupfer cells, which
detect liver tissue injury. When Kupfer cells are activated, they
release pro-inflammatory cytokines and chemotactic factors, such
as the chemokine C-C motif ligand. Consequently, hepatic stel-
late cells are activated, which leads to the modulation of key ex-
tracellular matrix components and functional interactions with a
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Fig. 2. Schematic representation of how the gut microbiota contributes to the development of NAFLD. In the left panel, the gut-liver axis components are
functioning normally. NAFLD is depicted in the right panel. The dysbiotic microbiome, together with the changed intestinal barrier due to the malfunction of
the tight junctions, facilitates the translocation of some bacterial products into the portal vein. These bacterial products interact with TLRs on the surface of
the hepatic cells, which leads to inflammation and NAFLD development. NAFLD, nonalcoholic fatty liver disease; TLR, Toll-like receptor.

microRNA implicated in NAFLD fibrosis as shown in Figure 2.8
We have highlighted various metabolites of the gut microbiota and
their roles in NAFLD progression in Table 3.88-91.95-114

Therapeutic interventions

Gaining insights into the role of gut microbiota, microbe-associ-
ated molecular patterns, and metabolites produced by microbiota
in the development of NAFLD may pave the way for innovative
diagnostic and therapeutic strategies. NAFLD encompasses a di-
verse range of disorders, each with distinct subtypes resulting from
different combinations of the aforementioned factors. Thus, it is
crucial to incorporate this knowledge into both the diagnosis and
treatment of NAFLD.

Currently, the diagnosis and monitoring of liver disease require
a liver biopsy. Therefore, it is crucial to find reliable noninvasive
methods to assess NAFLD. Recent research on gut microbiota has
found that certain bacterial species and metabolites were useful as
diagnostic and prognostic indicators. Loomba et al. have identi-
fied a panel of 37 bacterial strains from the gut microbiota that
accurately diagnose advanced fibrosis in NAFLD patients. Ad-
ditionally, several metabolites derived from the microbiota show
promise as indicators of NAFLD. Phenylacetic acid, succinate,
and 3-(4-hydroxyphenyl) lactate are among the most promising.
NAFLD patients often have a decreased microbial gene richness,
which affects the metabolism of aromatic and branched-chain
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amino acids. For example, 3-(4-hydroxyphenyl) lactate, which is
associated with liver fibrosis, is a byproduct of aromatic amino
acid metabolism. The level of phenylacetic acid in the blood is cor-
related with the severity of liver steatosis. Succinate, produced by
bacteria associated with NAFLD like Bacteroidaceae and Prevo-
tella, is elevated in feces, serum, and liver samples of NAFLD
patients.3!

On numerous levels, a comprehensive understanding of gut
microbiota might be employed for therapeutic purposes, as illus-
trated in Figure 3. The utility of precision medicine encompass-
ing tailored probiotics, prebiotics, synbiotics, and FMT to target
dysbiosis of the gut microbiota in individual patients provides a
new avenue for microbial-derived therapeutics. Another exciting
prospect is the modulation of the production of beneficial metabo-
lites and blocking the synthesis of harmful ones. FMT is emerging
as a potential treatment for various gastrointestinal disorders and
offers a way to restore a healthy gut microbiota composition and
function in patients. FMT is a medical procedure where fecal mat-
ter from a healthy donor is transplanted into a recipient’s gut to re-
store a healthy gut microbiome. It can help restore a balanced and
diverse gut microbiota in NAFLD patients, potentially mitigating
dysbiosis by the introduction of Lactobacillus, Bifidobacterium,
and Pediococcus species.!'> FMT has been shown to enhance gut
barrier function, reducing the translocation of harmful bacterial
products like lipopolysaccharides into the liver and reducing in-
flammation.'® FMT may influence BA composition and metabo-
lism in the gut, which can impact liver health, inflammation, and
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Table 3. Role of various metabolites in NAFLD progression

Metabolites Role References
Short-chain fatty acids
1. Propionate Activates AMP-activated protein kinase, increases expression of the fatty 89,90
acid oxidation gene, suppresses macrophage pro-inflammatory activation,
inhibits isoproterenol and adenosine deaminase-stimulated lipolysis
2. Butyrate Activates AMPK activation, increases expression of the fatty acid oxidation 94,95
gene, suppresses macrophage pro-inflammatory activation, upregulates
glucagon-like peptide-1 receptor expression to improve NAFLD
3. Acetate Regulates hepatic lipid metabolism and insulin 96
sensitivity via FFA receptor 2 in hepatocytes
Indole derivatives
4. Indole-3-acetic acid (IAA) Improves lipid metabolism, insulin resistance, 97
and inflammatory and oxidative stress
5. Indole Reduces the lipopolysaccharide-induced upregulation 98
of -pro-inflammatory mediators
6. Indican: indoxyl-3- sulfate Reduces gut permeability in high fat diet-fed mice 99
Indigo Development of obesity, white adipose tissue, 100
inflammation, and insulin resistance
8. IPA: indole-3-propionate Increases expression of the intestinal mucosa and tight junction proteins 101,102
Ethanol Oxidative stress and inflammation, increases gut permeability 103
and levels of lipopolysaccharide, decreases the gut barrier
10. 2-butanone Regulates insulin sensitivity 85
11. Ceramides Induces sterol regulatory element-binding protein regulator, increases 104
TAG (Triacyl glycerol) synthesis and lipid droplet storage
Bile acids
12. Primary bile acids Increases insulin sensitivity, inhibits gluconeogenesis and lipogenesis, 105,106
chenodeoxycholic acid, anti-inflammatory and antifibrotic properties, regulates the
cholic acid, deoxycholic gut microbiota, enhances fatty acid translocation and uptake,
and lithocholic acid promotes CD36 translocation to the plasma membrane
13. Choline Regulates mitochondrial bioenergetics and fatty acid beta-oxidation, 107-109
phosphorylcholine synthesis, loss of apoptotic mechanisms, reactive
oxygen species generation, endoplasmic reticulum stress
14. Trimethylamine N-oxide Suppresses the BA-mediated hepatic farnesoid C receptor 110
signaling, increases inflammatory cytokine C-C motif
chemokine ligand 2 and insulin resistance
15. Homocysteine Increases hepatic oxidative stress, induces expression of 111-113
inflammatory cytokines and profibrogenic factors, activates
the aryl hydrocarbon receptor/CD36 pathway
16. Serotonin Inhibits energy expenditure of brown adipose tissue, 114

blocks mitochondrial uncoupling protein

FFA, free fatty acid; NAFLD, nonalcoholic fatty liver disease.

fat accumulation in hepatocytes."'” FMT from a healthy donor
may increase the production of beneficial SCFAs in the recipient’s
gut. SCFAs have anti-inflammatory properties and can improve
insulin sensitivity. FMT can facilitate communication between the
host and the gut microbiota, leading to positive changes in meta-
bolic pathways. Clinical trials exploring the efficacy of FMT in
NAFLD patients are needed to validate its potential therapeutic
role.!S The identification of specific gut microbial markers as-
sociated with NAFLD progression could lead to the development
of noninvasive diagnostic tools. These tools may rely on fecal-,
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blood-, or breath-based biomarkers that enable early detection and
monitoring of NAFLD without the need of invasive liver biop-
sies. Further research on the interaction between gut microbiota
and metabolites could shed light on the underlying mechanisms
that drive NAFLD progression. Moreover, single beneficial strains
or groups of beneficial strains (probiotics) can be introduced into
the gut microbiota to restore lost functionality, while harmful or
undesirable strains can be removed with antimycotics, antibiotics,
or bacteriophages. Finally, microbial pathways might be targeted
to minimize or prevent the formation of harmful metabolites while
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Fig. 3. Gut microbiome-centered therapeutic strategies against NAFLD. Dysbiosis promotes the process of NAFLD via multiple pathways. Gut microbi-
ome-targeted therapeutic strategies include probiotic, prebiotic, synbiotic, and FMT that can reverse dysbiosis and mitigate the process of NAFLD. BCAA,
branched-chain amino acid; FMT, fecal microbiota transplantation; NAFLD, nonalcoholic fatty liver disease; SCFA, short-chain fatty acid.

enhancing the production of beneficial ones.

FMT can reconstruct whole microbial ecosystems. Moreover,
single beneficial strains or groups of beneficial strains (probiotics)
can be introduced into the gut microbiota to restore lost function-
ality, while harmful or undesirable strains can be removed with
antimycotics, antibiotics, or bacteriophages. Finally, microbial
metabolic pathways might be targeted to minimize or prevent the
formation of harmful metabolites while enhancing the production
of beneficial ones.

Data on the efficacy of FMT in the treatment of NAFLD are
scarce. FMT has been shown to be effective in treating cirrhotic
individuals with hepatic encephalopathy.!!® and alcoholic hepati-
tis.”® NAFLD has also been treated using prebiotics, probiotics,
and synbiotics. Prebiotics are indigestible food components such
as that selectively increase the development and activity of help-
ful gut bacteria.'?® This concept was eventually broadened to en-
compass fiber-based probiotics and other substrates that the host
bacteria use selectively and provide health advantages. Not only
indigestible carbohydrates like galacto-oligosaccharides, fructo-
oligosaccharides, and trans-galacto-oligosaccharides but also
other substances like polyphenols and polyunsaturated FAs that
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can modulate the gut microbiota are included in the new defini-
tion.!?! Probiotics are living, nonpathogenic bacteria that, when
ingested, can improve the host’s health. Lactobacilli, Streptococci,
and Bifidobacteria are the most widely used probiotics in clinical
studies.!??

Synbiotics are a combination of probiotics and prebiotics that
positively impact the host. According to animal and human tri-
als data, synbiotics may help alleviate NAFLD-related dysbiosis
and liver disease. In NAFLD patients, for example, a recent meta-
analysis discovered that taking synbiotics/probiotics was linked
to improvement of liver-specific indicators of hepatic stiffness,
inflammation, and steatosis.!?® The therapeutic strategy of using
a bacteriophage to target a specific strain, especially cytolytic E.
faecalis, was efficacious in treating ethanol-induced liver injury in
humanized mice.

Emerging therapeutic methods can change gut microbiota com-
position to promote the synthesis of beneficial metabolites and de-
crease the production of toxic metabolites. For example, 3, 3-dime-
thyl-1-butanol can prevent microbial trimethylamine lyases from
converting dietary choline to trimethylamine. Trimethylamine is
a well-known toxic metabolite that can induce inflammation in
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gut, and prolonged inflammation can induce IBD and colorectal
cancer.!>* Other studies have determined that increased levels of
beneficial metabolites such as SCFA can improve liver steatosis.
Another drug, tributyrin, which is a butyrate prodrug, is reported to
protect mice from insulin resistance, obesity, and hepatic steatosis,
whereas acetate and propionate supplementation prevented diet-
induced weight gain, insulin resistance, and hepatic steatosis.!?5
XR and TGRS signaling pathways that modulate BA metabolism
are also interesting therapeutic targets, such as obeticholic acid is
shown to improve fibrosis, portal hypertension, and hepatic steato-
sis in animal models and improved histological features in NASH
patients. In addition, fibroblast growth factor has been established
as a therapeutic agent for metabolic diseases because of its role
in lipid and carbohydrate metabolism. Clinical trials of fibroblast
growth factor-based therapies have shown its efficacy in patients
with NAFLD. These treatments contain fibroblast growth fac-
tor analogues that can reduce liver inflammation and fibrosis.!?¢
NGM282, counterpart of fibroblast growth factor 19 that modu-
lates BA synthesis and glucose balance, has been identified as hav-
ing the potential to reduce hepatic steatosis in NASH patients.!?
Farnesoid X receptor agonist, obeticholic acid, is a first-in-class
approved agonist for noncirrhotic primary biliary cholangitis treat-
ment; however, second-generation farnesoid X receptor agonists
are in development to overcome the side effects of the first-in-
class drug. For example, MET409 is a second-generation farnesoid
X receptor agonist which has shown better efficacy and less side
effects such as pruritus and increase in low-density lipoprotein
than obeticholic acid.'?® Tropifexor and cilofexor are farnesoid X
receptor agonists possessing distinct structures from obeticholic
acid and MET409. A study reported that administration of 30 mg
cilofexor for 12 weeks in NASH and fibrosis patients decreased
liver stiffness and hepatic fat and improved liver biochemistry.!*
Additionally, under development for NAFLD treatment are specif-
ic agonists for the thyroid hormone receptor-beta, namely resme-
tirom and VK2809. Resmetirom is the pioneer oral, liver-targeted
thyroid hormone receptor-beta 1-selective agonist. In a 36-week
phase II randomized clinical study, resmetirom achieved NASH
resolution in a subgroup of patients with control biopsies. Simul-
taneously, improvements were recorded in liver steatosis, liver
stiffness, lipid serum profile, and fibrosis biomarkers like Pro-C3
and hepatic enzymes. This was coupled with a marked reduction
in NAFLD activity.!3? VK2809, an alternative thyroid hormone
receptor-beta agonist, undergoes hepatic metabolism through the
action of CYP450 enzymes. It had a highly favorable tolerability
profile, and a substantial decrease in hepatic fat was detected by
magnetic resonance imaging following a 12 weeks of treatment.!3!

Conclusions

A growing body of evidence indicates that the microbiome uni-
fies and explains the divergent findings in liver disease-related
investigations. The broad interplay between the gut microbiota
via specialized chemicals such as trimethylamine, acetaldehyde,
and lipopolysaccharide, and the host immune system via Kupffer-
cell-mediated liver inflammation is now widely accepted as play-
ing a role in liver damage. However, we still do not completely
understand the interactions between the microbiota and the liver.
Many critical molecular processes in the etiology of liver disease
have been elucidated primarily in animal models, notably rodents.
Including the microbiome in these models will give researchers a
more comprehensive picture of the liver ecosystem. Because tech-
nical heterogeneity can hide underlying biological signals in mi-
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crobiome research, there is a need for uniformity in technological
platforms and standardized methods so that results from diverse
laboratories and model species can be replicated and confirmed.
It is also crucial to find an animal model that closely resembles
human illness in all physiological and metabolic aspects because
studies have constantly been finding evidence of an association be-
tween NAFLD risk and extra-hepatic cancer development in both
sexes. Furthermore, this review highlights the importance of plac-
ing more attention on developing biomarkers based on microbi-
ome and metabolic profile that can diagnose the stage of NAFLD,
assess the risk, and help in the selection of a specific treatment
approach.

We are gradually moving away from observational studies in
people as research lays the groundwork for microbiome-based
treatment modalities like FMT and probiotic therapies. However,
effectively translating and applying results from animal models to
humans demands well-designed, large-scale clinical studies en-
compassing a wide range of illness etiologies and health status.
We underline the necessity of concentrating on microbiome-aware
initiatives to efficiently confront the socio-economic burden of
this range of liver disorders as the microbiota functions in hepatic
disease development, prognosis, and therapy become better under-
stood.
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Abstract

The global burden of colorectal cancer (CRC) is a pressing concern, with a substantial impact on public health. Despite ad-
vancements in understanding the molecular mechanisms of CRC development, challenges remain in translating this knowl-
edge into effective clinical interventions. Key genetic mutations, notably in the adenomatous polyposis coli (APC) and Kirsten
rat sarcoma virus (KRAS) genes, are central to CRC initiation and progression. Current CRC treatments include surgery and
chemotherapy, often combined with targeted agents. However, resistance and heterogeneity within CRC patients limit the
effectiveness of these therapies. Promisingly, research has focused on targeting APC and KRAS mutations for therapy. Small
molecules inhibiting the Wnt pathway and antibodies targeting specific components are under investigation. Targeting KRAS
itself is challenging due to its conserved structure, but disrupting its membrane interactions and subcellular localization are
potential therapeutic strategies. To address the limitations of single-drug therapy, combination approaches are gaining trac-
tion. Combination therapy not only minimizes off-target effects but also tackles drug resistance and diverse genetic alterations
within tumors. The intricate interplay of mutations and pathways in CRC necessitates multifaceted therapeutic strategies.
Although progress has been made in understanding CRC genetics and developing targeted therapies, there is still work to be
done to translate these insights into effective clinical treatments for CRC patients. This review provides crucial information for
novel combination treatments for CRC.

Introduction
Keywords: Colorectal cancer; Adenomatous polyposis coli; Kirsten rat sarcoma vi-
rus; Combination therapy; CRC treatment; Drug resistant.
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Colorectal cancer (CRC) is a malignant tumor that originates in
the colon or rectum. CRC is a significant global health concern,
as demonstrated by statistics from 2020, where approximately
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150,000 individuals worldwide received a CRC diagnosis, re-
sulting in 53,200 fatalities.! Among these patients, 17,930 indi-
viduals under the age of 50 were diagnosed with CRC, leading
to 3,640 deaths in this age group.! Gender differences are appar-
ent, with CRC being more prevalent in males than in females, as
evidenced by data from the World Health Organization database.
Furthermore, variations in CRC incidence rates are evident glob-
ally. Countries such as Australia, New Zealand, Europe, and North
America experience higher rates of the disease, while Africa and
South-Central Asia exhibit lower rates (Global Burden of Disease
Cancer Collaboration). These disparities may stem from factors
such as dietary habits, environmental influences, and genetic vari-
ations.? The rising trend of CRC incidence is particularly evident
in China, where the burden on the healthcare system has been
steadily increasing, especially in developed regions. A similar
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scenario has been observed in Hong Kong, where CRC remains
a common form of cancer, as highlighted by 5,634 new cases re-
ported in 2018. Furthermore, the mortality rate for males was 37
per 100,000, while for females, it was 22.2 per 100,000 (Centre for
Health Protection 2020).

CRC is not solely attributed to a single genetic mutation; instead,
it emerges from intricate molecular signaling pathways character-
ized by a complex interplay of mutations and disruptions. This
process involves a gradual transition from adenoma to carcinoma
and eventually to metastatic disease—a multistep journey driven
by gene mutations and irregular pathways.> Recent advances in
genome-wide sequencing have unveiled a comprehensive array of
nearly 80 mutated genes implicated in CRC. Notably, among these
are adenomatous polyposis coli (APC), Kirsten rat sarcoma 2 viral
oncogene homolog (KRAS), and p53.* The APC gene mutation,
occurring in 70-80% of CRC cases, plays a pivotal role within
the Wnt/beta-catenin signaling pathway is significant.’ In addition
to APC, another recurrently observed mutation involves the RAS
gene family, especially KRAS, a commonly altered oncogene af-
fecting 30-50% of CRC patients.® The p53 gene, functioning as a
tumor suppressor, influences the cell cycle, apoptosis, genetic sta-
bility, and angiogenesis control.” While specific mutations initiate
tumorigenesis, it is important to recognize that the progression and
development of tumors involve the intricate interplay of multiple
genes.® Additionally, epigenetic factors such as DNA methyla-
tion, histone modifications, chromatin remodelers, and noncoding
RNAs have emerged as significant contributors to the advance-
ment and growth of CRC.?

This review explores APC and KRAS mutations in colorectal
cancer, discusses prevailing treatment challenges, and outlines
emerging combination therapies. We aim for this review to en-
hance comprehension of colorectal cancer’s mutational landscape
and therapeutic strategies, thereby fostering research and imple-
mentation of innovative combination therapies.

APC mutations in CRC

The APC gene holds substantial importance as a frequently mu-
tated tumor suppressor gene within CRC.!? Situated on chromo-
some 5q21-q22, this gene spans 8535 nucleotides and comprises
21 exons encoding a 310kDa protein containing 2843 amino acids.
A pivotal site for both germline and somatic mutations of APC
lies within exon 15, encompassing 75% of the gene’s coding se-
quence.!! This finding is consistent with the central role of APC
in governing the influence of the Wnt pathway on the prolifera-
tion and differentiation of gastrointestinal tract cells.!> Mechanisti-
cally, APC plays a pivotal role in inhibiting B-catenin/T-cell factor
(TCF)-dependent transcription through complex breakdown. This
process involves stimulating the phosphorylation and subsequent
ubiquitin-dependent degradation of B-catenin.!*> APC bolsters this
degradation mechanism by promoting Axin multimerization and
stabilizing the Axin complex.'* Additional regulatory mechanisms
include reducing nuclear pB-catenin levels through the promotion
of B-catenin export, direct binding to B-catenin to impede TCF
interactions,! and facilitating C-terminal binding protein (CtBP)-
mediated repression of Wnt-target genes through direct interaction
with a repression complex.'®!7 Alterations in APC result in the ac-
tivation of B-catenin/TCF transcriptional activity due to B-catenin
accumulation. This attenuation of CtBP-mediated inhibition with-
in the repression complex leads to elevated levels of downstream
targets, including cyclin D1 and c-myc. These factors significantly
influence tumor cell proliferation, apoptosis, and cell cycle regula-
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tion (Fig. 1).'%1° Evidently, APC intricately interacts with critical
signaling pathways and biological processes implicated in CRC
development.!’ Recent investigations have shown that restoring
APC functionality can promote tumor regression and restore crypt
homeostasis in CRC, suggesting that the Wnt pathway is a promis-
ing therapeutic target for CRC treatment.?’

KRAS mutation in CRC

KRAS is one of the most commonly mutated genes in human can-
cer and has significant implications for CRC treatment. Within this
context, various forms of KRAS mutations have been categorized
into three main groups based on the altered codon: G12 (muta-
tions at codon 12), G13 (mutations at codon 13), and Q61 (muta-
tions at codon 61).2! Notably, KRAS mutations are prevalent in
approximately 30-50% of CRC cases.® Among these mutations,
15 distinct point mutations are found to be particularly signifi-
cant: GI12A, G12D, G12F, GI2K, GI12N, G12S, GI12V, G12Y,
G12C, GI12E, G121, GI12L, GI2R, GI2T, and G12W. Of these,
G12D and G12V are the predominant subtypes, accounting for ap-
proximately 41% and 28%, respectively, of all G12 mutations.??
Clinical investigations consistently indicate that CRC patients car-
rying KRAS mutations tend to experience reduced survival rates
compared to those without such mutations.?> Moreover, within the
realm of KRAS mutations, G12D and G12V mutations have been
associated with the poorest prognoses among CRC patients.?* Ad-
ditionally, research findings demonstrate that individuals with G13
mutations in CRC patients experience significantly lower survival
rates when diagnosed at stage I or II than when diagnosed with
wild-type KRAS.%?5 Furthermore, for CRC patients harboring
mutations at codon 12, the 5-year overall survival rate is notably
lower than that for those carrying codon 13 mutations or wild-type
KRAS.26

KRAS functions as a pivotal sensor that initiates a cascade of
signaling molecules, facilitating the transmission of signals from
the cell surface to the nucleus. This activation process signifi-
cantly influences essential cellular functions, including cell dif-
ferentiation, growth, chemotaxis, and apoptosis. Notably, KRAS
plays a critical role in regulating key signaling pathways such as
the PI3K-Akt and RAS-RAF-MAPK pathways, which play piv-
otal roles in cell proliferation.?’-2 KRAS functions as a down-
stream component of the epidermal growth factor receptor (EGFR)
pathway. Upon EGFR activation, the intracellular tyrosine kinase
phosphorylates and activates KRAS, subsequently triggering the
RAS-RAF-MAPK pathway. After activation, KRAS transitions to
its activated state, KRAS-GTP, which is later hydrolyzed by GT-
Pase, returning to the inactive KRAS-GDP state. This dynamic
equilibrium involves alternating between its active (KRAS-GTP)
and inactive (KRAS-GDP) forms. However, mutations within
KRAS lead to the abnormal activation of downstream pathways,
such as RAS-RAF-MAPK or phosphoinositide 3-kinase (PI3K),
regardless of EGFR activation status (Fig. 2).3%31 Persistently ac-
tive KRAS results in irregular and uncontrolled cell growth, cel-
lular transformation, heightened cancer metastasis, and increased
resistance to chemotherapy and EGFR-targeted therapies across
various cancer types, including CRC.3%33

Clinical challenges

Surgery stands as the primary curative approach for patients with
nonmetastatic CRC, while chemotherapy offers an alternative ther-
apeutic avenue. Notable drugs utilized for CRC treatment include
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tor/lymphoid enhancer factor.

S-fluorouracil (5-FU), capecitabine, irinotecan, oxaliplatin, cetuxi-
mab, and panitumumab.3* In addition to conventional chemother-
apy, targeted agents play a role in treating metastatic CRC. For ex-
ample, cetuximab, the first FDA-approved targeted drug for CRC,
targets EGFR. Additionally, bevacizumab, focusing on VEGF, has
gained approval. Other drugs like panitumumab, regorafenib, and
ramucirumab, all targeting VEGF/VEGFR, have also been ap-
proved for CRC treatment. Notably, recent years have seen the ap-
proval of immune checkpoint inhibitors such as pembrolizumab,
nivolumab, and ipilimumab.35 However, the landscape of CRC is
complex and characterized by multifaceted processes marked by a
sequence of genetic alterations.3® Notably, the pronounced occur-
rence of tumor heterogeneity in CRC, stemming from chromosom-
al instability or microsatellite instability,’” collectively influences
the efficacy of targeted therapies.

Despite these promising avenues, drugs specifically targeting
APC and/or KRAS mutations have yet to receive FDA approval.
CRC frequently involves APC and KRAS mutations, rendering
them attractive therapeutic targets. However, it is important to note
that medications aimed at targeting the APC/WNT/beta-catenin
signaling pathways are currently in the preclinical development
phase (Table 1),38:39-46

Over the past decade, a dedicated pursuit has aimed to advance
therapeutic strategies against the APC/WNT/beta-catenin signaling
pathway in CRC patients. This endeavor has led to the discovery of
a range of small molecules that effectively inhibit this pathway by
targeting various signaling molecules.®#748 Notably, phase 1 and

54

2 clinical trials have been conducted for these inhibitors, includ-
ing WNT974, ETC-1922159, RXC004, and CGX1321, which are
PORCN inhibitors; OTSA101-DTPA-90Y, which functions as an
FZD10 antagonist; OMP-18RS5, a monoclonal antibody targeting
FZD receptors; and PRI-724, a CEB/beta-catenin antagonist.*’ De-
spite these promising efforts, none have yet secured FDA approval
for CRC treatment. The exceptional complexity of the APC/WNT/
beta-catenin pathway plays a significant role in this process. Be-
yond APC mutations, beta-catenin can be further activated through
alternate signaling pathways.>*-53 Numerous studies suggest that
these supplementary regulatory processes contribute to the ob-
served limitations in achieving satisfactory clinical outcomes with
these inhibitors and antibodies. Moreover, the potential toxicity of
these inhibitors on the intestinal epithelium, coupled with the risk
of off-target effects, might have hindered their progress in clinical
applications (Table 2).54

Presently, there is a lack of approved drugs specifically target-
ing KRAS for CRC treatment. Instead, approvals have been di-
rected toward inhibitors of downstream signaling cascades, such as
the RAF and MEK pathways (Table 1).35 For example, selumetinib
(AZD6244), functioning as a MEK 1/2 inhibitor, is designed to
hinder the MEK enzyme within the RAS/MAPK pathway. Addi-
tionally, trametinib, a potent and selective ATP-independent inhibi-
tor of MEK 1/2 kinases, falls within this category.5® Another exam-
ple is GDC-0623, a MEK inhibitor that enhances BIM expression,
which is currently under investigation in a phase I clinical trial.>?
However, concentrating solely on downstream cascades unrelated
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Fig. 2. A schematic diagram showing oncogenic signaling pathways associated with mutated KRAS. ARAF, serine/threonine-protein kinase A-Raf; BRAF,
B-Raf proto-oncogene, serine/threonine kinase; ERK, extracellular signal-regulated kinase; KRAS, Kirsten rat sarcoma 2 viral oncogene homolog; MEK, mito-
gen-activated protein kinase kinase; RAF1, rapidly accelerated fibrosarcoma 1.

to KRAS may not yield the desired effectiveness in cancer treat-
ment. This challenge might arise from the inherent difficulty in
pharmaceutically targeting KRAS.3® Research has highlighted sev-
eral obstacles in the quest for KRAS-targeted treatments (Table 2).
These include the highly conserved nature of the GTPase catalytic
domain on KRAS proteins, the competitive binding issues faced
by small molecule drugs with substrates, and the limited number
of binding sites on the KRAS protein surface for small molecule
inhibitors.>*-%4 Nevertheless, strategies aimed at disrupting KRAS-
membrane interactions and altering KRAS subcellular localization
continue to hold promise. Recent insights into functionally signifi-
cant posttranslational modifications of the KRAS protein, includ-
ing phosphorylation and ubiquitylation, introduce novel prospects
for inhibiting KRAS activity.

Development of novel drug combinations for CRC treatment

The inception of combination therapy dates back to 1965 when

DOI: 10.14218/JTG.2023.00063 | Volume 2 Issue 1, March 2024

Emil Frei and colleagues pioneered the inaugural utilization of
combination chemotherapy in pediatric patients afflicted with acute
leukemia.%® The resounding success of this innovative therapeutic
paradigm ushered in a transformative era within clinical oncology.%®
Subsequently, cancer research has increasingly focused on the ex-
ploration of combination therapies designed to concurrently target
disparate molecular pathways, resulting in favorable anticancer out-
comes. Concurrently, progress in cancer cell genomics, epigenom-
ics, transcriptomics, and proteomics has facilitated the identification
of novel molecular targets, underpinning the development of highly
selective targeted anticancer interventions.®” These targeted thera-
pies have substantially diversified the arsenal of combinational an-
ticancer modalities, capable of integration with other targeted thera-
pies or conventional chemotherapeutic agents.

The efficacy of single-drug therapy often encounters limita-
tions, leading to the emergence of drug resistance.® In fact, resist-
ance to 5-FU treatment occurs in approximately half of all CRC
patients.” Recently, there has been a growing focus on combining
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Table 1. Selected targeted therapy trials for colorectal cancer

Treatment  Trail S.a I Study groups Reaols Side effects i
size rate ence
WNT974 Phasel 94 BRAF-mutant CRC, BRAF- N.A Dysgeusia, Decreased appetite, and Nausea 39
mutant CRC with RNF43
mutation and/or RSPO fusion
ETC- Phasel 20 Metastatic solid tumors N.A Dysgeusia, B-CTX increase, Fatigue, 40
1922159 Constipation, and Nausea
RXC004 Phase2 20 RNF43 or RSPO aberrated, Ongoing  Ongoing 41
metastatic, microsatellite
stable colorectal cancer
CGX1321 Phasel 77 colorectal cancer or small N.A Dysgeusia, Bone resorption 42
bowel cancer carrying RSPO
or RNF43 alterations
OTSA101- Phase1l 20 Progressive advanced N.A Reversible hematological disorders 43
DTPA-90Y Synovial Sarcomas
OMP-18R5 Phasel 18 Advanced solid tumors N.A Fatigue, Vomiting, Abdominal pain, a4
Constipation, Diarrhea and Causea
PRI-724 Phasel 18 Advanced solid tumors N.A Hyperbilirubinemia, Diarrhea, Bilirubin 45
elevation, Hypophosphatemia, Nausea,
Fatigue, Anorexia, Thrombocytopenia
and Alkaline phosphatase elevation.
GDC-0623 phasel 45 Advanced solid tumors N.A Rash, Gastrointestinal symptoms 46

and Visual disturbance

BRAF, B-Raf proto-oncogene, serine/threonine kinase; CRC, colorectal cancer; RNF, ring finger protein; RSPO, R-spondin; B-CTX, serum C-terminal telopeptide of type | collagen.

drugs to leverage synergistic interactions. Combination therapy
offers notable advantages. First, it allows for reduced drug dos-
ages, thereby decreasing the risk of off-target side effects.”! Sec-
ond, this approach targets multiple facets, effectively curbing the
development of drug resistance.”> These attributes hold particu-
lar importance when addressing heterogeneous cancers such as
CRC. The intrinsic heterogeneity of CRC is well documented.
In some cases, patients with the same tumor may display distinct
genetic alterations, and even cells within a tumor might carry var-
ying genetic mutations. Resistance to a single chemotherapeutic
agent, whether innate or acquired, can stem from factors such as
suppressed apoptosis or enhanced DNA repair, leading to cancer
relapse or treatment resistance. Therefore, combination therapy is
especially advantageous because diverse drugs can target differ-
ent pathways or genes. This approach substantially reduces the
number of cancer cells that can withstand treatment, effectively
delaying cancer recurrence and, optimally, achieving complete
eradication.

The utilization of combination chemotherapy has evolved into
the prevailing standard of care within the field of medical on-
cology. Considering the profusion of available chemotherapeu-
tic and targeted anticancer agents, forecasting and developing
innovative drug combinations presents a formidable challenge.
Thus, it is imperative to explore the requisite methodologies for

Table 2. Hurdles of development of targeted therapies

prognosticating combinations that exhibit synergistic anticancer
efficacy.

Conclusion

CRC represents a significant global health challenge, with con-
siderable variations in incidence rates across regions and gender
differences. Among numerous genes that contribute to CRC de-
velopment, APC and KRAS mutations are pivotal factors driving
tumorigenesis. Current research efforts are focused on inhibiting
the APC/Wnt/beta-catenin and KRAS pathways. While progress
has been made in the field of small molecules and inhibitors, their
clinical application has encountered hurdles due to the complex-
ity of these pathways and the emergence of alternative signaling
mechanisms. Combination therapy has emerged as a promising
approach to address the complexity and heterogeneity of CRC. By
targeting multiple facets and pathways simultaneously, combina-
tion therapies can potentially enhance treatment efficacy, mitigate
drug resistance, and ultimately improve patient outcomes.
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