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Editorial
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The role of nootropic supplements is becoming increasingly relevant 
in today’s integrated therapeutic landscape.1 The choice of adjunc-
tive therapy is increasingly complex because of the increasingly 
elaborate nature of the drugs and, consequently, the potentially re-
sulting drug interactions. The use of a nootropic, although it has an 
active component, turns out to be less disruptive overall because of 
the fewer interactions resulting from its very nature; another aspect 
not to be underestimated is the general propensity of the patient to 
take a product to which he or she does not attribute the exact nature as 
the drug generally used in therapy, and this allows the clinician to be 
able to administer an effective add-on with good compliance on the 
part of the patient.2 Among nootropic supplements, Nosustrophine 
has an important role. The effects of this supplement are manifold, 
and currently, its use is found in the treatment of Alzheimer’s disease 
(AD). Among pharmacological interventions, the most widely used 
in AD are natural products (25.6%), followed by anti-amyloid beta 
compounds (13%), neurotransmitter enhancers (11.4%), multitarget 
drugs (2.5%), and antitau drugs (2.3%).3

Nootropic supplements are composite preparations that help to 
enhance multiple areas of neuronal function, such as concentra-
tion, memory, cognitive attention, and motivation while strength-
ening cognitive functions in patients affected by multiple neuro-
degenerative diseases.4 Delving deeper into the evaluation of the 
neurobiological aspects of nootropics, we can highlight that frac-
tionated catecholamines and serotonin were found in the Nosustro-
phine extract using ultra-high performance liquid chromatography 
(UHPLC) with electrochemical detection (ECD).5

On deep biochemical evaluation, it emerges how Nosustrophine 
extracts contain brain-derived neurotrophic factors and multiple 
neurotransmitters, particularly dopamine, norepinephrine, and 
serotonin. It is well known that there is a correlation between the 
pathogenesis and course of AD and reduced brain concentrations 
of dopamine, norepinephrine, and serotonin.6 Moreover, this em-
phasizes AD and a wide range of pathologies affecting the neurons 
and the brain, including psychiatric pathologies.

Laboratory data emphasizing the effects of Nosustrophine on 

microglia and multiple brain formations have shown that in aged 
mice, Nosustrophine promotes the expression of SIRT1. Further-
more, overexpression of SIRT1 may lead to neurodegeneration, 
with the implication of beta-amyloid and tau pathology potentially 
through deacetylation of histone H3 and dysfunction at the mito-
chondrial level.7

Various natural compounds protect against neurodegeneration 
and contain epinutraceutical properties8 and, starting from this, 
the wide range of uses that could be fulfilled in neurobiology by 
nootropics, particularly by Nosustrophine, becomes apparent.

Furthermore, assessing the effects on neuronal plasticity reveals 
how Nosustrophine is responsible for effective regulatory activ-
ity of histone deacetylases with the improvement of neuroplasti-
city and consequent restoration of functions, such as learning and 
short- and long-term memory. In patients with AD, these neuropro-
tective aspects imply a regulatory and limiting role of processes 
aimed at microstructural degeneration of the neuron and its more 
refined functions.9 It seems important to emphasize the role these 
findings might have in preventing and treating add-ons but not lim-
ited to all those diseases with a mnesic component, either from 
neurodegeneration or environmental demand overload, including 
multiple forms of depression and psychosis.

The reviewed article presents a strength in applying Nosus-
trophine to novel models, such as HepG2 hepatocarcinoma and 
SHSY5Y neuroblastoma cells. The highlighted therapeutic prop-
erties, particularly concerning dopaminergic neural leakage, and 
reduction of neuroinflammation, are accompanied by considerable 
evidence of increased neuroprotection, giving this compound pos-
sibilities in a future perspective as a protective factor not only in 
AD but also in other neurodegenerative diseases, such as Parkin-
son disease and multiple sclerosis.

Its limitations lie in the very nature of the work. However, the 
study was conducted with great rigor and precision. The applica-
bility of the cell culture model necessitates confirmation of the 
data and a move to the following stages of experimentation up to 
human subjects. The article appears novel and significant in its 
scope by filling in the gaps in the literature inherent in the appli-
cation of Nosustrophine, which has so far focused on alternative 
models. At present, there are no effective therapeutics available 
for neurodegenerative disorders.10 It similarly shows how various 
studies address the usefulness of Nosustrophine, particularly Car-
rera et al.11 highlight its usefulness as an effective therapy using 
nootropic supplements against degenerative diseases, while sev-
eral authors delve into deeper cellular and molecular mechanisms, 
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reflexively highlighting its validity as exerts substantial epigenetic 
effects against AD-related neurodegeneration.12,13 Particularly in 
their work, Carrera et al.14 effectively illustrate the neuronal pro-
tective effect of Nosustrophine in cell culture models by highlight-
ing how this is an epigenetic bioproduct derived from the brain 
of Sus scrofa domesticus using nondenaturing biotechnological 
processes on the progression of neurodegeneration in human neu-
roblastoma cell line SH-SY5Y.

The data obtained in the laboratory, and particularly in vitro, 
show that Nosustrophine contributes to the prevention of dopamin-
ergic neuron loss in the central nervous system, with an essential 
role at the neurobiological level in the course of diseases such as 
schizophrenia and psychotic spectrum disorders. The neuropro-
tective activity that is exercised directly and indirectly with the 
support of neuroplasticity, implies application for the prevention 
and treatment of neuroinflammation. This highlights how Nosus-
trophine may be useful for the prevention of toxic neuroinduction 
and environmental effects in the genesis of multiple psychopatho-
logical and neurological disorders.
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and Restenosis after Percutaneous Coronary Intervention:  
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Abstract
Background and objectives: Restenosis is a serious complication after percutaneous coronary intervention (PCI) for patients 
with coronary heart disease (CHD). This prospective clinical study was designed to investigate the effects of liposomal prosta-
glandin E1 (lipo-PGE1) on coronary stenosis and restenosis.

Methods: Sixty patients diagnosed with CHD and scheduled for PCI surgery in Guangdong Hospital of Traditional Chinese 
Medicine were enrolled in this study. The patients were divided into either the Control group (n = 30) or lipo-PGE1 treatment 
group (PGE group) (n = 30). Restenosis after PCI was the primary outcome, and newly increased stenosis was the secondary 
outcome.

Results: In total, 54 patients finished the follow-up and were included in the final analysis (n = 30 in the Control group and n 
= 24 in the PGE group). Baseline comparisons of stenosis location, stenosis degree, and the number of vessels in stenosis before 
PCI were comparable (P > 0.05). Comparisons of implanted stents showed similar features in stent diameter and stent length 
during PCI between the two groups (P > 0.05). For the primary outcome, there was no obvious difference in restenosis percent-
age (χ2 = 1.520, P = 0.615) nor number of vessels in restenosis (χ2 = 0.070, P = 0.791) in three arteries between groups. For the 
secondary outcome, although there was no significant difference in the number of non-culprit vessels in increased stenosis after 
PCI between groups (χ2 = 3.902, P = 0.272), the percentage of increased stenosis was much lower in the right coronary artery in 
the PGE group than the Control group (U = 263.0, P = 0.048).

Conclusions: This study demonstrated the lipo-PGE1 did not affect restenosis after PCI, but it may be effective in ameliorating 
newly increased stenosis in arteries.

Keywords: Coronary heart disease; Percutaneous coronary intervention; Nano lipo-
somal prostaglandin E1; Restenosis; Newly increased stenosis.
Abbreviations: ACS, acute coronary syndrome; CCS, chronic coronary syndrome; 
CHD, coronary heart disease; DCB, drug-coated balloon; DES, drug-eluting stents; 
DM, diabetes mellitus; ISR, in-stent restenosis; lipo-PGE1, liposomal Prostaglan-
din E1; PCI, percutaneous coronary intervention; TLR, target lesion revasculariza-
tion.
*Correspondence to: Qing Liu, The Second Clinical School of Medicine, Guangzhou 
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2023;8(4):269–275. doi: 10.14218/JERP.2022.00094.

Introduction
Patients with severe coronary heart disease (CHD) are commonly 
treated with percutaneous coronary intervention (PCI).1 However, 
a loss in vessel lumen area of stented arteries is indicative of in-
stent restenosis (ISR), which is a serious complication after PCI.2 
Although drug-eluting stents (DES) have dramatically decreased 
the incidence of ISR, the occurrence of ISR is still approximately 
5–10% among CHD patients after PCI.3,4 Therefore, there is a 
need to explore novel medications that can be administered in the 
peri-operative period of PCI to decrease the occurrence of resteno-
sis or prevent ISR.

Liposomal prostaglandin E1 (lipo-PGE1) is a kind of nanolipid 
microsphere (liposome)-based PGE1. Previous studies showed 
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that lipo-PGE1 can decrease coronary restenosis in a canine throm-
bolysis model5 and reduce the incidence of periprocedural myo-
cardial injury both in patients6 and porcine.7 Lipo-PGE1 was also 
found to be effective for improving microcirculation.8 The nanoli-
posome delivery system is also a popular method for targeted drug 
delivery,9 and reviews have indicated that targeted nanoparticle-
mediated delivery of multifunctional drugs could be a promising 
approach to prevent or treat restenosis.10 Thus, this prospective 
clinical study was designed to investigate the effects of lipo-PGE1 
on coronary stenosis and restenosis after PCI in CHD patients.

Methods

Ethical approval and informed consent
This study was approved by the Ethics Committee of Guangdong 
Provincial Hospital of Traditional Chinese Medicine (approval 
registration number BF2020-283). All samples were collected with 
appropriate participant informed consent in compliance with the 
Helsinki Declaration.

Patient source
Patients were enrolled into groups according to the diagnostic 
inclusion and exclusion criteria. Initially, 60 patients diagnosed 
with CHD scheduled for PCI surgery in Guangdong Hospital of 
Traditional Chinese Medicine from 2020 to December 2022 were 
enrolled and divided into two groups: basic medication for preven-
tion and treatment of CHD (Control group, n = 30) and basic medi-
cation combined with lipo-PGE1 treatment (PGE group, n = 30).

Group treatments
For the Control group, basic medication normally included drugs 
for anti-platelet therapy, lipid lowering, controling ventricular 
rate, and controling hypertension or hyperglycemia. For the PGE 
group, nanolipid microspheres-based PGE (10 µg) (Penglai Nuo-
kang Pharmaceutical Co., LTD) was added to 0.9% normal saline 
(NS) (250 ml) for intravenous injection, 20 gtt/min, once a day for 
3 days during the peri-operative period of PCI. Basic medications 
were maintained in the two groups after discharge.

Diagnostic criteria
CHD diagnoses and the criteria for PCI followed the Guidelines 
for Percutaneous Coronary Intervention (2019) in China.

Inclusion and exclusion criteria
Inclusion criteria were as follows: (1) The diagnosis fulfilled the 
criteria of CHD. (2) The condition conformed to the criteria for 
PCI. (3) The patients were able to complete the follow-up inter-
view. (4) The patients voluntarily participated and signed informed 
consent.

Exclusion criteria included
(1) Patients with abnormal mental consciousness who could not 
cooperate, or patients with unstable vital signs. (2) Patients with 
related drug contraindications or allergies. (3) Those who partic-
ipated in other clinical trials within 1 month. (4) Older than 80 
years of age, pregnant or ready to be pregnant, lactating women, 
or infants.

Abscission criteria
(1) Patients who withdrew from the trial without adverse reactions 
or poor efficacy. (2) Those who lost connection during follow-up.

Termination criteria
(1) The researchers considered it medically necessary for the pa-
tients to terminate the trial. (2) Patients withdrew from the trial au-
tonomously. (3) Those who suffered severe adverse reactions and 
could not insist on continuous treatments.

Primary and secondary outcomes
The rate of restenosis after PCI was the primary outcome, and the 
rate of newly increased stenosis was the secondary outcome. The 
measurement for restenosis and increased stenosis was performed 
using angiography or coronary computed tomography (CT), with 
or without transthoracic coronary doppler ultrasound. All out-
comes were observed within 1.5 years after PCI.

Safety index monitoring
Adverse reactions were closely monitored when treatments were 
administered to all patients. All adverse reactions were observed, 
treated when necessary, and recorded.

Statistical analysis
A dataset was constructed and analyzed using SPSS (v26.0, Inc. 
USA) and R (v3.6.2, http://www.r-project.org) software. Continu-
ous data are expressed as mean ± standard deviation, and the Kol-
mogorov-Smirnov test was used for normally distributed data. If 
the continuous data fit a normal distribution, comparisons between 
the two groups were performed using two independent sample 
Student’s t-tests. Otherwise, the Mann-Whitney U test was used. 
Categorical variables are expressed in frequency and proportions 
(%). Chi-square (χ2) tests with or without continuous correction or 
Fisher’s exact test were used for comparisons between groups. P < 
0.05 was considered statistically significant.

Results

Demographic characteristics of patients
In total, 60 patients were enrolled based on the criteria, and 6 pa-
tients were lost during follow-up. Finally, 54 patients (Control 
group, n = 30; PGE group, n = 24) finished the follow-up and were 
included in the final analysis. There were no significant differences 
in sex, age, diagnosis subsets, comorbidities, and basic treatments 
between the Control and PGE groups (Table 1).

Baseline of vessel features in stenosis before PCI
We first compared the baseline of vessel features in stenosis before 
PCI between the Control and PGE groups. Stenosis location was 
defined as proximal, middle, and distant. We observed no signifi-
cant difference in stenosis vessel features between the two groups 
(P > 0.05). The stenosis degree was also calculated by the area 
percent of occlusion and distinguished by total occlusion or not. 
The results showed no obvious differences between the two groups 
(P > 0.05) (Table 2). Comparisons of the number of vessels in ste-
nosis before PCI were not statistically different (χ2 = 5.982, P = 
0.050) (Table 3).

Characteristics of implanted stent features during PCI
As the characteristics of implanted stent features during PCI may 
affect the prognosis of restenosis,11 we collected and compared the 
stent features. There were no statistical differences in the stent di-
ameter and stent length between the two groups (P > 0.05) (Table 
2). Comparisons of the number of stents implanted during PCI also 
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demonstrated no significant differences between the two groups 
(χ2 = 1.520, P = 0.615) (Table 4). These results showed that vessel 
features in stenosis before PCI and implanted stent features dur-
ing PCI were similar between the Control and PGE groups. This, 
combined with the demographic characteristics of the patients, in-
dicates that the two groups were comparable at baseline.

Effects of PGE on restenosis in culprit vessels after PCI
The percentage of restenosis was generally divided into less or 
more than 50% of the artery lumen area, and the number of reste-
nosis in each vessel was calculated.12,13 We found that restenosis 
in the LCX was the least severe, and the percentage of restenosis in 
the LCX was less than 50%. Statistical analysis showed no obvious 
difference in restenosis percentage of each of these three arteries 
between the Control and PGE groups (χ2 = 1.520, P = 0.615) (Ta-
ble 5). Analysis of the restenosis type14 of each vessel showed sim-
ilar results, with no significant difference in each artery between 
the two groups (P > 0.05) (Table 6). Comparisons of the number of 
vessels in restenosis showed no statistical differences (χ2 = 0.070, 
P = 0.791) (Table 7). These data suggest that lipo-PGE1 has no 
significant effects on ameliorating restenosis after PCI.

Effects of PGE on newly increased stenosis in non-culprit ves-
sels after PCI
As there was no obvious effect of lipo-PGE1 on restenosis, we 
further investigated the effect of PGE on newly increased stenosis 

after PCI, which was calculated by comparing the baseline of ves-
sel stenosis and the stenosis in non-culprit vessels after PCI. The 
Kolmogorov-Smirnov test indicated abnormal distribution and the 
Mann-Whitney U test was used for comparison. Results showed 
that the percentage of increased stenosis of the RCA in non-culprit 
vessels was much lower after PCI in the PGE group compared to 
the Control group (U = 263.0, P = 0.048), while no significant dif-
ferences were observed in the LAD and LCX arteries (Table 8). The 
number of non-culprit vessels in increased stenosis after PCI was 
also calculated; we found no significant differences between the 
Control and PGE groups (χ2 = 3.902, P = 0.272) (Table 9). These 
data suggest that lipo-PGE1 treatment may be effective in decreas-
ing newly increased stenosis in non-culprit vessels after PCI.

Adverse reactions
The most frequently observed adverse reactions of lipo-PGE1 
were phlebitis and anaphylaxis, and most of these adverse reac-
tions disappeared after discontinuation of medication (Table 10). 
No severe adverse reactions were found with lipo-PGE1 treatment.

Discussion
This study examined the effects of nanolipid microspheres 
(liposome)-based PGE1 on coronary stenosis and restenosis after 
PCI using a prospective clinical trial design. We found that lipo-
PGE1 treatment may be effective in decreasing newly increased 

Table 1.  Comparison of baseline characteristics between groups, [n(%)]

Variables Control (n = 30) PGE (n = 24) P

Sex 0.210

 female 5 (16.7%) 1 (4.17%)

 male 25 (83.3%) 23 (95.8%)

Age 61.2 (11.0) 61.2 (9.21) 0.986

Diagnosis 0.063

 ACS 7 (23.3%) 1 (4.17%)

 CCS 23 (76.7%) 23 (95.8%)

Comorbidity

 hypertension 18 (60.0%) 14 (58.3%) 1.000

 hyperlipidemia 9 (30.0%) 6 (25.0%) 0.919

 DM 10 (33.3%) 10 (41.7%) 0.729

 Other 0 (0.00%) 2 (0.08%) 0.193

Basic treatments

 anti-platelet 23 (76.7%) 23 (95.8%) 0.113

 lipid-lowering 9 (30.0%) 6 (25.0%) 0.919

Number of comorbidities 0.261

 0 2 (6.67%) 5 (20.8%)

 1 15 (50.0%) 8 (33.3%)

 2 8 (26.7%) 6 (25.0%)

 3 5 (16.7%) 3 (12.5%)

 4 0 (0.00%) 2 (8.33%)

ACS, acute coronary syndrome; CCS, chronic coronary syndrome; DM, diabetes mellitus; PGE, prostaglandin E.
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stenosis in non-culprit vessels after PCI.
Nanolipid microspheres (e.g. liposome) are a novel drug de-

livery system. It was reported that drug-loaded liposomes applied 
on a multilayer-coated balloon catheter improved the limitations 
of drug-eluting balloons (DEB) for the treatment of coronary ar-

tery disease.15 A double-blind, randomized clinical trial (BLAST 
study) used liposomal Alendronate as a single intravenous bo-
lus and showed that treatment with liposomal Alendronate could 
significantly decrease in-stent late loss in patients with baseline 
monocyte counts higher than the median value.16 These data sug-

Table 3.  Comparisons of the number of vessels in stenosis before PCI between groups, [n(expected)]

Groups
Number of vessels in stenosis

Total χ2 P
1 2 3

Control 9 (7.2) 11 (8.3) 10 (14.4) 30 (30.0) 5.982 0.050

PGE 4 (5.8) 4 (6.7) 16 (11.6) 24 (24.0) 5.982 0.050

Total 13 (13.0) 15 (15.0) 26 (26.0) 54 (54.0)

Pearson χ2 test.

Table 2.  Characteristics of vessels in stenosis and stents between groups, [n(%)] or [M(IQR)]

Variables Control (n = 30) PGE (n = 24) P

Location of stenosis

  LAD 1.000

    proximal 17 (56.7%) 15 (62.5%)

    middle 8 (26.7%) 6 (25.0%)

    distant 1 (3.33%) 0 (0.00%)

    none 4 (13.3%) 3 (12.5%)

  LCX 0.184

    proximal 3 (10.0%) 5 (20.8%)

    middle 11 (36.7%) 11 (45.8%)

    distant 3 (10.0%) 4 (16.7%)

    none 13 (43.3%) 4 (16.7%)

  RCA 0.225

    proximal 10 (33.3%) 7 (29.2%)

    middle 3 (10.0%) 7 (29.2%)

    distant 5 (16.7%) 5 (20.8%)

    none 12 (40.0%) 5 (20.8%)

Stenosis in vessels (%)

  LAD 80.0 [50.0;90.0] 75.0 [57.5;86.2] 0.512

  LCX 32.5 [0.00;72.5] 80.0 [37.5;90.0] 0.050

  RCA 43.5 [0.00;90.0] 85.0 [36.2;90.0] 0.275

Total occlusion 12 (40.0%) 8 (33.3%) 0.825

Stent diameter (mm)

  LAD 2.75 [0.00;3.00] 2.00 [0.00;2.78] 0.130

  LCX 0.00 [0.00;0.00] 0.00 [0.00;2.12] 0.572

  RCA 0.00 [0.00;1.88] 0.00 [0.00;2.75] 0.921

Stent length (mm)

  LAD 16.5 [0.00;29.0] 22.5 [0.00;29.0] 0.843

  LCX 0.00 [0.00;0.00] 0.00 [0.00;4.75] 0.747

  RCA 0.00 [0.00;18.0] 0.00 [0.00;29.2] 0.499

LAD, left anterior descending; LCX, left circumflex artery; PGE, prostaglandin E; RCA, right coronary artery.
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gested that nanolipid microspheres could be a potential method for 
improving restenosis treatment.

Restenosis in coronary arteries after PCI has several underly-
ing pathogenic causes, such as activation of the clotting system by 
injured endothelial cells and healing facilitated by vascular smooth 
muscle cell migration, proliferation, and synthetic activities.4,14 
The average time from restenosis occurrence after PCI has been 
reported to be within 12 months with drug-eluting stents (DES), 

and typically presents as recurrent angina.17 Evaluation of staged, 
target lesions, and other unplanned revascularization procedures 
during the first year after PCI showed that target lesion revascu-
larization (TLR) occurred with higher hazard rates between 2 to 
9 months after PCI.18 The commonly used technologies for reste-
nosis treatment include bare metal stents, DES, conventional and 
cutting balloon angioplasty, drug-coated balloons (DCB), and 
atherectomy devices.14,19 However, there is still a population of 
patients who suffer restenosis more than once even with suitable 
treatments. Thus, adjuvant medication becomes more important in 
the peri-operative period of PCI.

PGE1 (also named Alprostadil) has been used to treat chronic 
arterial obliterans (thromboangiitis obliterans, obliterans arterio-
sclerosis, etc.) and improve cardiovascular and cerebrovascular 
microcirculation disorders. A prospective, single-blind, rand-
omized trial of 30 patients administered intravenous PGE-1 by 
hemodynamically based titration at a mean dosage of 10–20 ng/

Table 4.  Comparisons of the number of stents in PCI between groups, [n(expected)]

Groups
Number of stents

Total χ2 P
1 2 3

Control 24 (22.8) 6 (6.7) 0 (0.6) 30 (30.0) 1.520 0.615

PGE 17 (18.2) 6 (5.3) 1 (0.4) 24 (24.0) 1.520 0.615

Total 41 (41.0) 12 (12.0) 1 (1.0) 54 (54.0)

The minimum expected count was 0.44, used fisher’s exact test.

Table 5.  Characteristics of vessels in restenosis after PCI between groups, [n(%)]

Variables Control (n = 30) PGE (n = 24) P

LAD 0.684

  0 27 (90.0%) 21 (87.5%)

  −50 1 (3.33%) 2 (8.33%)

  50− 2 (6.67%) 1 (4.17%)

LCX 1.000

  0 29 (96.7%) 24 (100%)

  −50 1 (3.33%) 0 (0.00%)

RCA 1.000

  0 27 (90.0%) 23 (95.8%)

  -50 2 (6.67%) 0 (0.00%)

  50− 1 (3.33%) 1 (4.17%)

−50; percentage of restenosis less than 50%, 50−; percentage of restenosis no less than 50%. Pearson χ2 test or fisher’s exact test.

Table 6.  Characteristics of restenosis types after PCI between groups, 
[n(%)]

Variables Control (n = 30) PGE (n = 24) P

LAD 0.805

  none 27 (90.0%) 21 (87.5%)

  type1 2 (6.67%) 3 (12.5%)

  type2 1 (3.33%) 0 (0.00%)

LCX 1.000

  none 29 (96.7%) 23 (95.8%)

  type1 1 (3.33%) 1 (4.17%)

RCA 0.747

  none 27 (90.0%) 23 (95.8%)

  type1 2 (6.67%) 0 (0.00%)

  type3 1 (3.33%) 1 (4.17%)

Pearson χ2 test or fisher’s exact test.

Table 7.  Comparisons of the number of vessels in restenosis after PCI 
between groups, [n(expected)]

Groups
Number of ves-

sels in restenosis Total χ2 P
0 1

Control 23 (23.9) 7 (6.1) 30 (30.0) 0.070 0.791

PGE 20 (19.1) 4 (4.9) 24 (24.0) 0.070 0.791

Total 43 (43.0) 11 (11.0) 54 (54.0)

Note The minimum expected count was 4.89, used continuous corrections χ2 test.
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kg/min at 2 hours before angiography. The 6-month follow-up 
showed that restenosis occurrence was 17% in the PGE-1 treated 
group, compared with 33–50% in the control group which only re-
ceived basic medication (P < 0.05). These data indicated that PGE-
1 was effective in decreasing coronary restenosis at 6 months after 
percutaneous transluminal coronary angioplasty.20 Since resteno-
sis usually occurs during the first year after PCI,17 we examined 
the effect of PGE-1 at 1.5 years after PCI initially to obtain a more 
comprehensive understanding of the role of PGE-1 in preventing 
restenosis occurrence. However, we did not find positive results. 
The reason may lie in the time point for outcome observation and 
relatively small sample size.

Although our data did not show significant effects of lipo-PGE1 
treatment for restenosis after PCI, we did observe a decrease in 
restenosis percentages in each of the three arteries examined. Fur-
thermore, the newly increased stenosis in vessels was affected by 
lipo-PGE1 treatment, and a significant difference was observed in 
the RCA artery. A previous randomized controlled trial indicated 
that intracoronary administration of Nicorandil and PGE1 was 
more effective in improving myocardial perfusion than Nitroglyc-
erin.21 Another randomized-controlled study administered lipo-
PGE1 at 20 µg/day diluted in 10 ml of NS through an intravenous 
injection over 5 min, starting at 3 days before PCI and continuing 
for 4 days after PCI. The results suggested that the cardioprotective 
effects of lipo-PGE1 were associated with its anti-inflammatory 
properties and its ability to improve microvascular perfusion.6 
Another clinical study suggested a relationship between the mi-
crocirculation and restenosis, evidenced by the finding that low-
er coronary blood flow responded to an endothelium-dependent 
vasodilator stimulus and was associated with long-term recurrence 
of restenosis.22 Thus, the anti-inflammatory and microvascular 

improvement effects of lipo-PGE1 may underlie the reduction of 
newly increased stenosis in arteries.

Future directions
The main limitation of this study was the relatively small sample 
size. Further studies with more subjects are needed to validate our 
conclusions. New studies can be designed to evaluate the treat-
ment effect of lipo-PGE1 on restenosis, which can be assessed by 
quantifying the degree of restenosis before and after lipo-PGE1 
treatment. Moreover, the underlying mechanisms of lipo-PGE1’s 
cardioprotective effects should be done by examining endogenous 
plasma PGE1 levels from CHD patients before and after PCI.

Conclusions
The current study was designed to evaluate the protective effects of 
lipo-PGE1 on coronary stenosis and restenosis after PCI. Our study 
showed the lipo-PGE1 did not affect restenosis after PCI, but it may 
be effective in ameliorating newly increased stenosis in arteries.
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Introduction
The gradual death of neurons in diverse parts of the nervous sys-
tem is a feature of neurodegenerative diseases.1 This loss of nerve 
cells leads to distinct neurological and cognitive symptoms that 
are specific to each condition. A prominent pathological feature 

in Alzheimer’s disease (AD) is the loss of neurons and synapses 
in the cerebral cortex and subcortical regions.2 This causes the at-
rophy of some affected areas due to pathological abnormalities, 
including the accumulation of β-amyloid protein and cellular ma-
terial in thick, insoluble deposits around and outside of neurons. 
The accumulation of Aβ and tau proteins in the brain has led to 
the definition of AD as a condition that produces proteotoxic pro-
teins.3 Previous studies have attempted to identify new therapeutic 
approaches. However, effective medications that can slow or halt 
the progression of neurodegenerative diseases, such as AD, are yet 
to be discovered.4–8

In the majority of cases, the supplementation of culture media 
with serum or other substances is required. However, there are a 
number of drawbacks to using serum, including high costs, un-
known composition, and greater risk of contamination with acci-
dental chemicals. For these reasons, the porcine (Sus scrofa do-
mesticus) brain is a reliable source of a number of growth factors.9 
Indeed, the growth factors released from neural tissues, such as 
those in the brain and retina, are powerful mitogens for mesoderm-
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derived cells, particularly for vascular endothelial cells and some 
ectoderm-derived cells.10 These chemicals are known as pituitary 
and brain fibroblast growth factors, due to the ability to stimu-
late fibroblast proliferation.11 A large number of sympathetic,12 
sensory,13 and parasympathetic14 neurons respond to neurotrophic 
chemicals by maturing, growing, and/or needing maintenance. 
The importance of substrate-binding neurite-promoting factors 
(NPFs), which are required under particular culture conditions for 
neurotrophic factors to affect peripheral neurons, has been high-
lighted.14–18

The number of astrocytes in the mammalian brain is consist-
ently steady throughout maturity,19,20 and this is most likely caused 
by the coexistence of specific mitogens and mitogen inhibitors.21 
Specific astroblast mitogen inhibitors exist in rat brain,22,23 and 
one such inhibitor, neurostatin, was recently discovered in rat and 
bovine brain extracts.24 Neurostatin shares epitopes with human 
blood types and the carbohydrate moiety of the epidermal growth 
factor (EGF) receptor.22,23 The elimination of an experimental rat 
brain tumor in vivo was aided by neurostatin.22,25,26 Furthermore, 
the artificial oligosaccharide counterparts of neurostatin can pre-
vent astrocyte, glioma, and neuroblastoma cell division in culture. 
In addition, the brain-derived trophic peptides used to treat endog-
enous neurotrophic factor deficiencies can decrease the degenera-
tion of neurological diseases.27,28 In order to protect neurons from 
oxidative stress-induced degeneration, these peptides promote cell 
survival and possible cell growth, in addition to other beneficial 
effects, in vitro and in vivo.29,30 Neurotrophic drugs may also im-
prove neuronal metabolism and cell performance, which can re-
store synaptic plasticity through the growth of new axons, enhance 
cognitive function by increasing neural connectivity, and enhance 
long-term memory.31 There is presently no effective treatment 
to stop the progressive degeneration of affected brain areas, and 
standard care typically concentrates on palliative medications to 
postpone dementia. Therefore, pharmacogenomic methods would 
directly contribute to improve pharmaceutical treatment responses 
for people with AD or other similar disorders.32 Nosustrophine is 
a novel pleiotropic epigenetic bioproduct, which is a nootropic 
supplement produced from young porcine (Sus scrofa domesticus) 
brain through non-denaturing biotechnological methods.33 The 
intended function of this formulation is to stimulate endogenous 
neuropeptide synthesis and release by activating neuro-enzymatic 
processes.

The present study aims to examine the neuroprotective effects 
of Nosustrophine against cellular degeneration, which lead to the 
development of neuropathologies. In order to determine the re-
sponse of neurons, astrocytes, and microglia to Nosustrophine at 
different concentrations, cell culture models were used in the pres-
ence or absence of oxidative stress. The present findings revealed 
that Nosustrophine can reduce the activation of microglia, and has 
a neuroprotective effect on neurons and astrocytes in culture.

Materials and methods

Biochemical characterization of Nosustrophine
Nosustrophine is a biological extract and an epigenetic bioprod-
uct33 synthesized from the brain of Sus scrofa domesticus using 
non-denaturing biotechnological methods (Patent ID: P202230047/
ES2547.5).

Compound analysis: The nutrient profile and analysis of the 
catecholamines, serotonin, L-dopa and neurotrophic factors of the 
powdered extract have been examined, and previously published.33

Experimental design
Treatment preparation: A stock solution (20 mg/mL) of lyophilized 
Nosustrophine extract (young porcine brain extract [PBE]) was 
sonicated in sterile filtered 0.9% NaCl, and centrifuged at 3,000 g 
for three minutes. Then, the supernatant was collected and used for 
all cell culture experiments.

For the analytic assays, 4.5 × 105 cells were grown for 24 hours 
in 6-well plates at 37°C. Then, these cells were exposed to 10 µg/
mL and 50 µg/mL of Nosustrophine for 0, 3 and 24 hours.

Cell line culture assays
Cell lines: Human neuroblastoma SH-SY5Y and hepatocarcinoma 
HepG2 cell lines were maintained in Roswell Park Memorial In-
stitute (RPMI, Gibco) or Dulbecco’s modified Eagle’s medium 
(DMEM, Gibco), supplemented with 1% penicillin/streptomycin 
(Gibco) and 10% heat-inactivated fetal bovine serum (Gibco). 
Then, the cells were incubated at 37°C in a humidified incubator 
with 5% CO2. These cells were kindly provided by Dr. Ana Aranda 
(Instituto de Investigaciones Biomédicas, Madrid). The SH-SY5Y 
neuroblastoma cell line is a commonly used experimental model 
for studying the molecular mechanisms underlying AD, due to its 
ability to differentiate into neurons, low cost, and ease of handling.

Cell viability assay: Cell viability was determined by Presto-
Blue Cell Viability assay (Thermo Fisher). Cells (1 × 104) were 
incubated with different concentrations of Nosustrophine (0.05–
10.00 mg/mL) for 72 hours in 96-well plates. Then, the Presto Blue 
reagent (10 µL) was added to each well, and incubated for three 
hours. Afterwards, the absorbance was recorded at 570 nm, with 
the absorbance at 630 nm used as the reference. Eight replicates 
were performed for each condition, and the experiment was re-
peated twice.

Primary cultures of cortical neurons
Obtaining the cells: All experimental procedures were performed 
in accordance with the European Community Law (86/609/EEC), 
European Union Directive 2016/63/EU, and the Spanish Royal 
Decree (R.D. 1201/2005). Study procedures were reviewed and 
approved by the Ethics Committee of the International Center of 
Neuroscience and Genomic Medicine.

Before starting the dissociation process, the culture plates were 
treated with poly-L-lysine to enhance the cell adhesion to the sur-
face. These cells were obtained from 17-day gestation Wistar rat 
fetuses. These rats were decapitated, and the fetuses were extract-
ed and washed with washing buffer (150 mM of NaCl, 8 mM of 
Na2HPO4·2H2O, 2.7 mM of KCl, 1.45 mM of KH2PO4 and 2.6 
mM of NaHCO3, pH = 7.2). Then, the cerebral cortices were ob-
tained by transferring the fetuses to a plate that contained com-
mercial dissection medium (L-15). Next, the meninges were re-
moved from the cortex before homogenization. Then, the cleaned 
cortex was transferred to a plate that contained the incubation 
medium, which consisted of 80% (v/v) Minimum Essential Me-
dium (MEM), 10% (v/v) horse serum, 10% (v/v) fetal serum, 1.98 
mM of glutamine, 3.3 mM of glucose, and 16 mg/L of gentamicin 
sulfate. Afterwards, the tissue was homogenized after mechanical 
disruption.

Sub-culturing: After homogenization, the number of obtained 
cells was counted. In order to count these cells, the Trypan Blue 
exclusion method was used in a Neubauer chamber. When the 
number of cells obtained was known, these were suspended in “in-
cubation medium” up to the required density, which was 2 × 105 
cells/cm2 for the present study. Then, these were seeded in 12-unit 
multi-well Petri dishes (∅ = 2.2 cm).
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Cell culture maintenance: During the first four days, the cells 
were maintained in the incubation medium. On the fourth day, this 
was changed to a growth medium (90% [v/v] MEM, 10% [v/v] 
horse serum, 1.98 mM of glutamine, 3.3 mM of glucose, and 16 
mg/L of gentamicin sulfate), which included a cytostatic agent, cy-
tosine arabinoside, in order to prevent the growth of different pro-
liferating cells, such as glia. At one week after these were plated, 
the medium was changed to a new growth medium that excluded 
cytosine. With this treatment, a homogenous neuronal culture was 
obtained that contained an approximately 5% glial cell population.

Primary cultures of glial cells
Obtaining the glial cells: In order to obtain a culture with a mainly 
glial cell population, the procedure performed was similar to that 
for obtaining neurons with some modifications. The seeding den-
sity was 5 × 104 cells/cm2, and no cytosine arabinoside was added 
on the fourth day after seeding. In this manner, the proliferation 
and growth of the glia was allowed. The percentage of each cell 
population was, as follows: 15 ± 3% neurons, 75 ± 8% astrocytes, 
and 10 ± 2% microglia. In addition, the experiments were con-
ducted at two weeks after seeding.

Oxygen and glucose deprivation (OGD)
The experiments were performed at nine or 10 days after sub-cul-
turing. In order to simulate the ischemia in vitro, OGD was per-
formed in a chamber (Forma Scientific) at 37°C, with the total 
absence of glucose, and an anaerobic nitrogen atmosphere (95% 
N2/5% CO2). Before commencing any treatment, the cells were 
washed twice with the “ischemia buffer” (130 mM of NaCl, 5.4 
mM of KCl, 1.8 mM of CaCl2, 0.8 mM of MgCl2, 1 mM of NaH-
2PO4 H2O, and 26 mM of NaHCO3; pH = 7.2) used during OGD, 
in order to remove the growth medium. During the OGD, the pres-
sure (0.5 psi) and temperature of the system were kept constant. 
The control group was maintained in an aerobic atmosphere with 
the glucose buffer (the same as the ischemia buffer, but contains 
33 mM of glucose) for the same duration. At the end of the OGD 
period, the cells were washed twice with reperfusion medium (the 
same as the growth medium, but gentamicin was replaced with 
0.15 ng/mL of penicillin), and fixed in this medium for a 24-hour 
reperfusion period. The OGD duration in the glutamate release ex-
periment was 150 minutes. The time range of 140–160 minutes 
was chosen, because glutamate was observed to be released at this 
time, and there was no lactate dehydrogenase (LDH) release. Thus, 
experiments in which the LDH values of the control and OGD 
groups significantly differed were not considered. This ruled out 
the possibility of unwanted glutamate release due to cell rupture 
and its subsequent consequences (excitotoxicity), which would in-
terfere with the study of the release mechanisms and the effect of 
Nosustrophine in this process. For the experiments, the OGD dura-
tion was 150 minutes. After the experiments, different cell viabil-
ity parameters, such as LDH, were measured. Then, the medium 
was removed after 150 minutes, and the cells were washed with 
reperfusion buffer and kept in an incubator at 37°C. This allowed 
the LDH to be measured at 0, 3 and 24 hours after OGD. These 
experiments were performed to verify the occurrence of cell death 
after OGD, and determine whether Nosustrophine is capable of re-
ducing this. Different concentrations of Nosustrophine (10, 50 and 
100 µg/mL) were added at the start of the OGD period.

Preparation and treatment of mouse organotypic hippocampal 
slice cultures (OHSCs)
The OHSCs were prepared from postnatal day 4–6 mice, follow-

ing an established protocol.34 After decapitation, the brains were 
removed, and the hippocampi were dissected and transversely cut 
in 350 µm sections using a McIlwain tissue chopper. In the in-
tact state, the hippocampal sections were selected and placed onto 
porous polyethylene (PTFE) membrane inserts (PICM0RG50, 
Merck Millipore), with three sections per insert. Then, the inserts 
were transferred to 6-well plates, with each well containing 1.2 
mL of culture medium. Next, the culture medium comprised of 
MEM supplemented with 2 mM of GlutaMAX™ (Thermo Fisher 
Scientific), and this was adjusted to pH 7.3. In addition, the me-
dium was supplemented with 20% heat-inactivated horse serum, 
0.00125% ascorbic acid, 1 µg/mL of insulin, 1 mM of CaCl2, 2 
mM of MgSO4, 13 mM of D-glucose, and 1 mM of GlutaMAX™. 
Then, the OHSCs were cultured at 37°C in a humidified CO2-en-
riched atmosphere, and the medium was changed twice each week 
for the subsequent 2–3 weeks.

In order to prepare the Aβ1-42 peptide solution, 1 mg of hu-
man amyloid β-peptide (1-42) (Tocris, Bio-Techne, Wiesbaden, 
Germany) was dissolved in 1 mL of sterilized distilled water, and 
stored at −20°C. Then, the peptides were aggregated by incubation 
at 37°C for 72 hours.35,36 In order to induce the Aβ1-42-induced 
neurotoxicity, the slices in the serum-free medium were exposed to 
a final concentration of Aβ1-42 (25 µM) on day 22 of the in vitro 
culture. The culture medium (300 µL) that contained the Aβ1-42 
peptides were applied on top of the slices, and 700 µL was added 
underneath the slices. The control slices were only treated with 
serum-free medium. For slices that were exposed to both Aβ1-42 
and Nosustrophine, the OHSCs were initially pretreated with 50 
µg/mL or 100 µg/mL of Nosustrophine in serum-free media for 
72 hours at 37°C. Then, these slices were exposed to 25 µM of 
Aβ1-42 in the presence of Nosustrophine (50 µg/mL or 100 µg/
mL) for 48 hours. Finally, the slices were washed with serum-free 
media and harvested.

Immunofluorescence
A total of nine cultured hippocampal explants were fixed in 4% 
paraformaldehyde, and blocked with 5% bovine serum albumin 
(BSA; Sigma, Japan) in phosphate buffered saline (PBS), which 
contained 0.1% Triton X-100, for 1.5 hours. Then, these were 
permeabilized with 0.3% Triton-X 100 in 0.1 M of PBS for 30 
minutes, and blocked again in 5% BSA in 0.1 M of PBS, which 
contained 0.1% Triton X-100, for 1.5 hours. Afterwards, the slices 
were incubated overnight with the primary antibody against the 
neuron-specific protein NeuN (1:1,000; MAB-377, Millipore), 
and detected using the Alexa Fluor-488-tagged secondary antibody 
(Thermo Fisher Scientific). The specificity of the fluorescent im-
munostaining for each antibody was confirmed by omission of the 
primary antibody. Then, the slices were counterstained with DAPI 
(Vector Laboratories). Several images of the three hippocampal 
explants from each treatment group were captured using the Leica 
DM6 B upright microscope and LAS X software. The mean densi-
ty among the triplicates of immunofluorescence cell markers rela-
tive to the background in each explant image was quantified using 
the area/pixel analysis software (Pixcavator 4).

Determination of lactate dehydrogenase activity
LDH is a cytosolic enzyme released into the extracellular space as 
a consequence of cell lysis. The demand for ATP, when compared 
to aerobic ATP supply, causes the accumulation of ADP, AMP and 
pyruvate. This glycolytic flux leads to the production of pyruvate, 
which exceeds the metabolic capacity of pyruvate dehydrogenase 
and other shuttle enzymes that metabolize pyruvate. This mecha-
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nism directs the flow of pyruvate and NAD+ via LDH, producing 
lactate and NADH in the process. In order to measure this, after 
OGD, a volume of medium was removed and mixed with the same 
amount of phosphate/NADH/pyruvate buffer (a final concentra-
tion of 350 µM of NADH, and 900 µM of sodium pyruvate; pH 
7.4). Then, the kinetics of the different cell groups with specific 
ATP concentrations (0, 1 and 3 mM) were measured for 150 sec-
onds in room temperature using a spectrophotometer at 340 nm. 
This wavelength was used to measure the increase in fluorescence, 
which is an indirect method to record the disappearance of NADH 
upon oxidation, due to the presence of LDH in the medium. Spe-
cifically, the reaction was, as follows:

LDH+NADH H Sodium pyruvate NAD Lactate++ + → +

LDH was expressed as a percentage of the total LDH. In order 
to calculate this value, the cells were lysed with Triton X-100, and 
measured at 340 nm. Then, the value, together with the values pre-
viously obtained at 0, 3 and 24 hours, were recorded as the total 
value of LDH. Thus, the released LDH value was determined, as 
follows:

LDH (mean)LDH (%) 100 .
LDH (mean) LDH (cells)

= ×
+

Statistical analysis
The data was tested for the normality and equality of variances us-
ing the Shapiro-Wilk test and Levene’s test. The statistical signifi-
cance was determined using one-way ANOVA with post-hoc Bon-
ferroni correction: *p < 0.05, **p < 0.01 and ***p < 0.001. All values 
were expressed as the mean ± standard error of the mean (SEM) of 
the number of experiments indicated in each case. A p-value of < 
0.05 was considered statistically significant (Newman-Keuls test).

Results

Effect of Nosustrophine on the viability of human cell lines
The impact of Nosustrophine on the viability of human cell lines 
was investigated by evaluating the cell viability rates of two dis-
tinct cell lines: hepatocarcinoma (HepG2) and neuroblastoma (SH-
SY5Y) cells. In order to assess the cytotoxicity of Nosustrophine, 
the different increasing concentrations of the drug that was added 
to the SH-SY5Y cell culture medium were tested (Fig. 1a). The 
control group presented with the expected low viability rates, since 
Nosustrophine was not added to the medium. However, as the con-

centration of Nosustrophine increased in the medium, there was 
a corresponding significant effect on cell viability. Even the low 
concentration of Nosustrophine (0.05 mg/mL) resulted in a con-
siderable difference in viability rate, when compared to the control 
group. The most substantial effect was detected at a concentration 
of 5 mg/mL of Nosustrophine. The present primary findings dem-
onstrate that Nosustrophine has a significant effect on the viability 
of neuroblastoma SH-SY5Y cells at concentrations greater than 1 
mg/mL (Fig. 1a).

Given its integral role in drug metabolism, the liver represents a 
suitable organ for assessing drug-induced cytotoxicity. The HepG2 
cell line, which is derived from human liver carcinoma, was used 
as the experimental model system for analyzing the possible ad-
verse effects of Nosustrophine. In order to evaluate the potential 
impact of this drug on cell viability, a standardized experimental 
protocol was used, and increasing concentrations of Nosustro-
phine were applied to the culture medium for HepG2 cells (Fig. 
1b). The control group under OGD, in which no Nosustrophine 
was introduced, had low rates of viability, akin to those detect-
ed in the SH-SY5Y cell line (Fig. 1a). Conversely, a moderate, 
concentration-dependent impact on the viability of HepG2 cells 
upon the administration of Nosustrophine was observed (Fig. 1b). 
Furthermore, a modest increase in cell viability rates was observed 
with Nosustrophine concentrations of greater than 0.5 mg/mL, and 
the most significant effects were observed with Nosustrophine 
concentrations that exceeded 1 mg/mL (Fig. 1b). These results col-
lectively suggest that Nosustrophine, even at high doses, may not 
confer any toxic effects on human cell lines, including both the 
SH-SY5Y and HepG2 cell lines (Fig. 1a, b).

Effect of Nosustrophine on mice neuronal and glial cell viability
As a model of oxidative stress, primary rat neurons were subjected 
to OGD (150 minutes). This induced neuronal death, as shown by 
the LDH viability marker in the control group. However, the ad-
ministration of Nosustrophine to the culture medium sustained the 
neuronal survivability rate at all three studied time points. Com-
pared to control cells, the amount of LDH released to the medium 
after OGD decreased at 0, 3 and 24 hours (Fig. 2). Neurons treated 
with Nosustrophine (10, 50 and 100 µg/mL) had similar levels of 
cell viability at zero and three hours after OGD. Nevertheless, at 
24 hours after OGD, all Nosustrophine-treated groups presented 
with a small increase in viability levels (Fig. 2). The LDH marker 
indicated a significant loss in astroglial cell viability in the OGD-
exposed control group. However, the astroglia that were treated 
with various concentrations of Nosustrophine (10, 50 and 100 µg/

Fig. 1. Nosustrophine increases cell viability. (a) Viability assay in the neuroblastoma SH-SY5Y cell line; (b) Viability assay in hepatocarcinoma HepG2 cell 
line. Cells were treated with 0.05–10.00 mg/mL of Nosustrophine, and the cell viability was measured after 72 hours of incubation; *p < 0.05, **p < 0.01, ***p 
< 0.001. HepG2, hepatocarcinoma cell line; SH-SY5Y, neuroblastoma cell line.
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mL) presented with significant improvements in viability levels, 
when compared to the control group (Fig. 3). This effect was posi-
tively associated with the concentration of Nosustrophine across 
all three time points. These data suggest that Nosustrophine sig-
nificantly enhances astroglial cell survival.

In cultured microglial cells, the identical OGD methodology 
was used on two separate sets of microglia, depending on the type 
of major histocompatibility complex (MHC) molecule expressed. 
Both kinds of microglial cells had a similar rate of viability re-
duction at all three time points, with varying concentrations of 
Nosustrophine (10, 50 and 100 µg/mL). The protective effect of 
Nosustrophine on microglia was inversely correlated to the drug 
concentration in the culture medium (Fig. 4). OHSCs offer a sensi-
tive model for investigating pathogenic responses. The treatment 

with both Nosustrophine (50 µg/mL) and Aβ1-42 (25 µM) resulted 
in pyknotic changes, and the loss of pyramidal neurons (Fig. 5b), 
mainly in the CA1-CA2 and dentate gyrus regions, when com-
pared to the control slices (Fig. 5a). However, higher concentra-
tions of Nosustrophine (100 µg/mL) protected against the Aβ1-42-
induced neurodegeneration, preserved the neuronal structure, and 
led to fewer pathogenic manifestations (Fig. 5c), when compared 
to 50 µg/mL of Nosustrophine.

Discussion
Neurotrophic factors have potential as treatments for neurode-
generative diseases, but its clinical application remains limited 
by challenges related to its transport to the brain and suboptimal 

Fig. 2. Cellular screening of the effect of Nosustrophine in the primary culture of neurons. The 150-minute OGD process induced neuronal death in the 
model used through a cell viability marker (LDH). There was an increase in LDH levels released to the medium at three and 24 hours after OGD. When neu-
rons in glutamate medium (10 µM) were incubated with Nosustrophin in the absence of magnesium for five minutes, this induced cell death. The incuba-
tion with Nosustrophin (10, 50 and 100 µg/mL) significantly modified the LDH values at all different confluence cell rates. LDH, lactate dehydrogenase; NST, 
Nosustrophine; OGD, oxygen and glucose deprivation.

Fig. 3. Cellular screening of the effect of Nosustrophine in the astroglial cell culture. The results for the glutamate release were significantly modified by 
the presence of Nosustrophin in cultures of microglia exposed to OGD. The incubation with nosustrophin (10, 50, and 100 µg/mL) significantly modified the 
LDH values at all different confluence cell rates. LDH, lactate dehydrogenase; NST, Nosustrophine; OGD, oxygen and glucose deprivation.
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pharmacokinetic profiles. In order to address this, safe delivery 
methods and the investigation of the duration of its effects are nec-
essary. The encapsulation of natural neuroprotective extracts is a 
promising approach for delivering neurotrophic factors to the brain 
during neurodegenerative disease phases. Combined with stem cell 
transplantation, this approach can enhance the neuroprotection, 
and promote tissue repair. The present study demonstrated the po-
tential of Nosustrophine as a biological compound for harnessing 
the advantageous traits of PBE. Earlier studies have demonstrated 
the neuroprotective effects of PBE in hypoxia-induced diseased 
animal models, and the enhanced proliferation and differentiation 
of primary cells from the ovary, uterus and heart of rats, when PBE 
was added to the culture media.9,37 However, the neuroprotective 
effects of PBE on mouse and human cell lines remain undocu-
mented. The present study revealed that Nosustrophine, which is a 
pure PBE molecule, can promote high levels of cell viability and 
survival rates, in both animal and human cultured cells. The pre-

sent findings suggest that Nosustrophine has neuroprotective ef-
fects, which increase glial density and promote neuronal survival. 
This effect may be beneficial for reducing common neuropatholo-
gies, since the cellular densities of the tested cell lines were higher 
than those of the control group. Furthermore, the present findings 
align with the findings of earlier reports that demonstrated the neu-
roprotective and neurotrophic properties of cerebrolysin, which is 
a commercially available porcine-derived brain extract.38,39

Growth factors regulate cell growth and proliferation in vivo 
and in culture. Growth factors are required for the proliferation of 
non-transformed cells in culture, and numerous factors are usu-
ally required. Since these deplete faster than other components of 
the culture media, these factors are rate-limiting for cell prolifera-
tion. Neoplastically altered cells may lack or require less growth 
factors, which may provide a growth advantage, and this is a dis-
tinguishing feature of cancer cells. At increasing concentrations, 
Nosustrophine exhibited a considerable impact on the viability of 

Fig. 5. Nosustrophine is protective against Aβ1-42-induced neurodegeneration in organotypic hippocampal slice cultures. Transverse slices of hippocampi 
obtained from neonatal mice pups were maintained on Millipore inserts for 22 days. The slices were exposed to (a) the vehicle (control), (b) Nosustrophine 
(50 µg/mL) with Aβ1-42 (25 µM), and (c) Nosustrophine (100 µg/mL)+Aβ1-42 (25 µM). Then, these were fixed and immunostained for NeuN (green). After-
wards, the nuclei were counterstained with DAPI (blue). The images were processed for maximal intensity projection. The white arrows point to the neurons. 
Scale bar: 80 µm. DAPI, neuronal nuclei; NeuN, marker of postmitotic neurons.

Fig. 4. Cellular screening of the effect of Nosustrophine in the microglia cell culture. The results for the glutamate release, although not significant, were 
modified by the presence of Nosustrophin in mixed-neuron-glia cultures exposed to OGD at all different confluence cell rates. NST, Nosustrophine; OGD, 
oxygen and glucose deprivation.
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hepatocarcinoma HepG2 and neuroblastoma SH-5YS cells, pos-
sibly indicating the interaction with these protein factors. Further-
more, in the present study, the HepG2 cell line data indicated that 
the Nosustrophine treatment had no adverse effects on the liver. 
However, research into the molecular mechanisms related to the 
proteins in Nosustrophine remains at its early phases.

The organotypic hippocampal slice culture is a suitable model 
system for studying the mechanisms of neurodegeneration, since 
this preserves several key features of the hippocampal circuitry in 
vitro, including synapse maturation and intrinsic signaling path-
ways.40 The investigators previously reported that in 8-9-month-
old transgenic AD (APP/BIN1/COPS5) mice, Nosustrophine 
substantially reduced the Aβ1-42 immunoreactivity levels, when 
compared to saline-treated mice. The present study confirmed that 
finding, and revealed that the treatment with 100 µg/mL of Nosus-
rophine was protective by reducing cellular damage and neuronal 
loss after 48 hours of co-exposure to Aβ1-42. However, the treat-
ment on hippocampal slices with 50 µg/mL of Nosustrophine did 
not prevent the Aβ1-42-induced neuronal death after 48 hours of 
exposure. Since Nosustrophine improves neurological injury out-
comes through mechanisms other than reducing oxidative damage, 
gaining an understanding of the molecular basis of its protective 
effect can help to identify effective therapeutic targets against neu-
rodegeneration.

Neurotrophins are an important group of chemicals that play a 
vital role in neuronal survival in vertebrates. These molecules are 
synthesized as large precursor forms, and undergo proteolytic pro-
cessing to produce mature, and biologically functional ligands.41,42 
Brain-derived neurotrophic factor (BDNF) regulates synaptic 
plasticity, neuronal survival, and differentiation, and this has been 
considered a promising molecular target for the treatment of neu-
rological disorders.43 Furthermore, BDNF plays a significant role 
in neuronal growth and cell survival, and is essential for chemi-
cal processes that underlie synaptic plasticity. Thus, BDNF may 
provide new therapeutic options for neurodegenerative and neu-
ropsychiatric disorders. In situations, such as epilepsy and persis-
tent pain sensitization, the pathological levels of BDNF-dependent 
synaptic plasticity may be a contributing factor. Neurotrophic fac-
tors, including BDNF, are significant pharmacological targets of 
AD.44,45 Low levels of BDNF are associated with synaptic loss 
and neurite atrophy in the brain of AD patients, while high levels 
of BDNF slow the AD progression and cognitive decline.46,47 Fur-
thermore, the injection of BDNF into the hippocampus reverses 
the learning deficits in the A1-42-induced AD rat model.48 An in 
vivo experiment conducted using conditional knockout mice that 
targeted glial TrkB by crossing TrkBflox/flox mice with GFAP-
Cre49 revealed that the stimulation of the BDNF-TrkB signaling 
pathway in glial cells produces neuroprotective effects.49–51 In ad-
dition, CNTF and bFGF levels are upregulated in BDNF-treated 
cultured Müller glia, conferring neuroprotective effects.52 These 
findings suggest that glial BDNF-TrkB signaling induces an in-
dependent neuroprotective effect by upregulating several neu-
rotrophic factors that promote prosurvival signaling in neurons 
and glia. Furthermore, earlier studies have revealed that several 
neurotrophic substances derived from PBE exhibit a positive ef-
fect on cultured brain cells. The neurotrophin nerve growth factor 
(NGF) enhances the development, differentiation, and survival of 
cholinergic neurons in the basal forebrain, making it an ideal cho-
linergic therapeutic agent.53 Exogenously-applied NGF improves 
cognitive function in old, impaired, or cholinergic-depleted rats, 
and rescues cholinergic neurons in the basal forebrain.53,54 These 
studies provide conclusive evidence of the neuroprotective effect 

of BDNF on brain cell culture models, which support the use of 
Nosustrophine as a reliable adjuvant medication for treating AD-
related dementia. Free-radicals play a crucial role in the patho-
physiology of brain damage following cerebral ischemia, and an-
tioxidants reduce this impairment by boosting scavenger enzyme 
activity.55 The positive effects of Nosustrophine were consistent 
with these findings, suggesting that its neuroprotective impact may 
be due to the increase in scavenger enzyme activity, which reduce 
oxidative stress or free-radicals in the various cell cultures exam-
ined. The pleiotropic effects of Nosustrophine may be attributed to 
the more precise targeting of its active components toward specific 
cellular target domains.

The present study aims to investigate the effects of Nosustro-
phine on the viability of astroglial and microglial cells, and the 
expression of MHC molecules, with the objective of assessing 
the neuroprotective potential of Nosustrophine. Inflammation is 
linked to microglia-mediated tissue damage, which underscores 
the importance of understanding the role of neurotrophic factors 
in maintaining tissue integrity and healing. The present data in-
dicates that the Nosustrophine administration at various concen-
trations had a positive impact on the survival and proliferation of 
astroglial and microglial cells. This suggests that Nosustrophine 
may contain neurotrophic factors that regulate the apoptosis of 
enteric glial cells.56 The disruption of this system may contribute 
to more severe inflammation. In addition, the availability of neu-
rotrophic factors is essential for the survival and function of do-
paminergic neurons, which are associated with neurodegenerative 
disorders, such as Parkinson’s disease. Although the link between 
GDNF and degenerative diseases has not been conclusively prov-
en, GDNF has the potential to improve the function of surviving 
dopaminergic neurons, and correct behavioral abnormalities that 
resulted from nigrostriatal degeneration.57,58 Therefore, GDNF has 
emerged as a promising treatment option for Parkinson’s disease.

Age is a significant risk factor for neurodegenerative disor-
ders, and the neurotrophic factor expression decreases with age.59 
The present preliminary findings suggest that active porcine brain 
proteins and neurotrophic factors are neuroprotective against 
cognitive dysfunction in AD through the regulation of various in-
tracellular processes. These findings support the potential use of 
neurotrophins as therapeutic agents for AD. However, more exten-
sive research is required to evaluate the effectiveness of Nosustro-
phine across different stages of the disease. The present study was 
conducted on a limited number of cell lines, and further investi-
gations are needed to establish the clinical efficacy of Nosustro-
phine. Nonetheless, the effectiveness of PBE in regulating scav-
enger enzymes and neurotrophic factors supports the potential of 
Nosustrophine as a neuroprotective agent. Two aspects should be 
given particular consideration for future research: First, PBEs are 
multi-component and multi-target drugs that can modulate neuro-
trophins in brain pathologies. However, the effective composition 
of Nosustrophine and its therapeutic effects require further investi-
gations to optimize its clinical outcomes and prescription designs. 
Second, more comprehensive studies are required to evaluate the 
therapeutic effects of PBE. Scientific research in these areas would 
advance the development of PBE treatment for brain disorders, 
and provide a fair assessment of the clinical outcomes.

Future directions
The understanding of the molecular underpinnings of this nootrop-
ic substance may be enhanced by clarifying the mechanism of 
Nosustrophine neuroprotection in the human neuroblastoma SH-
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SY5Y cell line. It may be possible to develop new therapies for 
the treatment of Parkinson’s disease and other dopaminergic neu-
rodegenerative processes by evaluating the molecular mechanisms 
underlying the neuroprotective effects of Nosustrophine, and other 
related neurotrophic factors derived from young porcine (Sus scro-
fa domesticus) brains. In order to preserve the high degree of com-
patibility and stability of the cell model, more effectively simulate 
the in vivo environment, and comprehend the mechanism of the 
disease state, it is crucial to choose the appropriate research ob-
ject and preparation techniques. Future studies should concentrate 
in developing more precise in vitro models that might be utilized 
to create brand-new medications that target the affected areas in 
the central nervous system, as these would offer huge benefits to 
people.

Conclusions
The present study investigated the effect of Nosustrophine, which 
is an epigenetic bioproduct derived from the Sus scrofa domes-
ticus brain using non-denaturing biotechnological processes, on 
the progression of neurodegeneration in the human neuroblastoma 
SH-SY5Y cell line. The present in vitro data indicated that Nosus-
trophine has therapeutic properties that prevent selective dopamin-
ergic neuronal loss in the central nervous system, and reduce sec-
ondary degenerative effects caused by chronic neuroinflammation. 
Furthermore, Nosustrophine exhibited neuroprotective and anti-
inflammatory effects, when this was administered before or after 
toxic neuroinduction. The present cell culture data highlights the 
potential of Nosustrophine as a preventive strategy against neuro-
pathological damage. Nevertheless, further preclinical studies are 
required to validate these findings.
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Introduction
Have you ever had an itch you just can’t scratch? Pruritus, or in 
layman’s terms, itching, is essentially the miscommunication be-
tween sense of touch and the central nervous system. This can 
cause feelings of unease, irritation, or anxiety, often leading to an 
irresistible urge to quell this sensation. Recent studies have high-
lighted the importance of the emotional impact of itching, particu-
larly in chronic cases. These studies demonstrated an association 
with higher rates of stress, anxiety, depression, and even suicidal 
ideation, leading to major deficits in quality of life.1

Although some itches may purely be due to physical or psy-
chological causes, most pruritus occur due to the combination 
of these two. Thus, due to multifactorial causes, the treatment 
for pruritus may need to be tailored to target multiple causes. 
The use of the placebo effect to lessen itch has become a par-
ticular interest. This has become especially fascinating, because 
this has a potential for low risk of side effects and toxicities 
due to avoidance of pharmacologic therapy, and high rewards 
of effective itch relief for patients. This narrative review exam-
ined relevant studies for itching, especially for pruritus induced 
by physiological reasons, and treated using a psychological ap-
proach, placebo.

Methods
In order to identify relevant studies, the authors searched Pub-
Med using a search strategy developed by the study team. The 
search strategy used a combination of keywords and controlled 
vocabulary words to capture the concepts of “itch”, “pruritus”, 
and “placebo” (refer to Table 1 for the details of the search strat-
egy). The search was performed by S.W. in May 2022, and 65 
articles were identified for review. Five reviewers independently 
checked the titles and abstracts. Then, the full articles of poten-
tial studies for inclusion were reviewed by the reviewers. For 
the inclusion of studies, the study was required to be specifically 
designed to evaluate the placebo or nocebo effect on itch. Among 
the reviewed studies, eight studies were identified for inclusion. 
Additional relevant studies were identified by checking the bib-
liographies of the relevant studies. Using this strategy, an addi-
tional two studies were identified for inclusion. Thus, a total of 
10 studies were reviewed, and two additional studies were in-
cluded, which provided additional statistical analysis related to 
the included studies.

Results
The results of the literature search resulted in a total of 10 studies 
(12 articles), and these were reviewed by the authors. One author 
(J.D.) reviewed the selected studies in detail, and compared the 
study methodology, size, interventions and findings. The details 
of the review are presented in Table 2. The study methodology 
varied among studies, and this often utilized verbal suggestion, 
conditioning, and/or the application of placebo topicals to elicit 
placebo responses. The sample sizes of all of the included studies 
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were relatively low, which ranged within 14–129 subjects, with an 
average of 108 subjects.

A. Strumpf et al. (Study 1, Table 2) used histamine or saline 
application as the physical intervention.2 Then, the subjects were 
verbally inquired whether they expected the application to cause 
itch.2 Verbal suggestion for itch to occur in the placebo saline 
group led to greater wheal development, and significantly higher 
reported itch intensities.2 Similar results were observed in groups 
that received histamine, indicating that itch, and in this case, even 
skin reactions, can be induced by verbal suggestion.2

A. Van Laarhoven et al. (Study 2, Table 2) reported similar 
results using various itch-causing stimuli, including mechanical, 
electrical, and chemical stimuli.3 For all stimuli, higher expecta-
tions for itch were associated with the reported increase in itch 
experience.3 Verbal suggestion was also effective in inducing 
a response in these subjects, resulting in a decrease in itch re-
sponse.3

D. Bartels et al. completed several trials using both active and 
sham electrodes, in order to stimulate itch (Studies 3, 4 and 5; 
Table 2).4–6 The authors combined the techniques of verbal sug-
gestion and conditioning to elicit placebo responses, and reported 
that the combination of these techniques was more effective than 
using verbal suggestion alone.4 Furthermore, it was reported that 
electrodes can decrease an itch, even though the intensity produced 
by the electrode does not change, significantly lowering the itch 
score.5 The additional analysis did not reveal significant changes 
in scratching episodes in the subjects, indicating that the nocebo 
effect does not conclusively extend from subjects that reported a 
feeling of itchiness to the act of physically scratching.6 More re-
search is likely needed in this area, since this was the only analysis 
that addressed scratching episodes.

The use of a placebo cream, which was represented to the study 
participants as an antihistamine cream, in combination with verbal 
suggestion, was examined in several studies conducted by M. Dar-
rah et. al. (Studies 6 and 7, Table 2).7,8 Both studies revealed that 
when the placebo cream and verbal suggestion were utilized, there 
was no significant difference in wheal area, but there were im-
provements in itch at various time periods.7,8 In addition, a reduc-
tion in heart rate from baseline was realized, when subjects were 
provided instructions on the effectiveness of the antihistamine (ac-
tually placebo) cream.7

In the Netherlands, S. Meeuwis et al. (Studies 8–12, Table 2) 
completed a number of studies related to placebo response and 
its impact on itch.9–13 Three separate studies were completed us-
ing histamine iontophoresis as the itch inducing stimuli.9–11 The 
use of this process enabled histamine to be introduced through 
the skin using current, creating an itch response. This process is 
commonly used in clinical research related to itch response and 
treatment. The group that initially conducted a study in 2018 re-
ported that positive verbal suggestions can lead to significantly 
lower itch expectations, but there was no significant difference 
in mean self-reported itch during iontophoresis.9 This result was 
in contrast to previous trials, which revealed improvement in ex-
perienced itch with verbal suggestion. Another study completed 
by the group of S. Meeuwis revealed similar results for both 
positive and negative verbal suggestion, resulting in changes in 
itch expectations, but without significantly impacting the expe-
rienced itch when looking at the area under the curve for the 
itch experienced during histamine iontophoresis and maximum 
itch intensity.10 The subsequent study completed by a group of 
investigators used a two-phase conditioning paradigm to invoke 
a placebo response.11 Various research groups used the combina-

tion of a conditioned stimulus (flavored water), an unconditioned 
stimulus (antihistamine), and placebo comparators, along with 
verbal suggestion.11 However, no significant differences were 
identified for mean self-reported itch, clinical skin response to 
histamine iontophoresis, heart rate, or skin conductance level.11 
When the results of these groups were combined for analysis 
conditioning, these were identified to be marginally effective in 
reducing itch.11

An alternate approach of using a placebo patch was utilized by 
the group of S. Meeuwis in a study published in 2021.12 In that 
trial, all subjects were given a placebo patch, that is, the subjects 
were given patches that contained caffeine (closed label group) or 
placebo (open label group).12 These groups were further divided 
into the positive suggestion group (patches that would improve the 
itch) and negative suggestion group (patches that would worsen 
the itch).12 No difference in clinical skin response was realized 
among the groups. However, the expected itch, self-rated skin re-
sponse, and self-rated mean itch were significantly lower in the 
positive suggestion groups.12

An additional analysis of previous trials (Studies 8, 9 and 11; 
Table 2) was conducted by S. Meeuwis et al., and published in 
2021.13 Innovative statistical methods were applied to determine 
the interindividual differences on how placebo effects are formed.13 
The researchers reported that the effects of open-label positive and 
negative verbal suggestions on itch may be more dependent on its 
expectation, while the closed label approach would directly influ-
ence the itch.13 Furthermore, the researchers determined that low 
sensitivity to rewards and high ignorance of bodily signals were 
associated with increased placebo response to verbal suggestion.13

Summary of available research and limitations
A review of 10 trials on placebo and nocebo effects on the per-
ception of itch and skin reactions in young healthy individuals by 
verbal suggestion, learning process, expectancy, or conditioning, 
or other means in open-label and closed label trials was completed. 
The results slightly varied among the studies. However, overall, 
verbal suggestion, conditioning, and/or placebo topicals appeared 
to produce a beneficial placebo effect on itch.

Itch, such as pain, is a subjective sensation of a person, and 
the intensity depends on various factors, including the frame of 
mind, psychological state, underlying medical or mental illnesses, 
and external cues, such as verbal suggestions, conditioning, etc. 
Therefore, it remains challenging to have an objective measure 
of itch. Merely four of the reviewed studies (Studies 1, 5, 6 and 
7; Table 2) used certain objective measures, such as the size of 
wheals, intensity of scratching, and heart rate, to gauge the pla-
cebo or nocebo effects on itch. However, these are not well-es-
tablished accurate surrogates to measure itch intensity, due to the 
psychological component of the patient’s itch experience. The use 
of subjective measures to evaluate the improvement or worsening 
of an itch remains difficult to some degree, given the interpatient 
variability. Furthermore, it remains difficult to directly compare 
the presently available literature, since the research methods and 
reported outcome measures are not standardized. Moreover, the 
placebo response varied in the studies, in which some studies 
reporting statistically and clinically significant improvements in 
itch, while other studies reported more modest placebo effects. 
Combining visual or tactile (i.e. patch or topical cream) with ver-
bal suggestion appeared to improve the placebo response. These 
trials indicate that there is a psychological component to itch that 
can be influenced by inducing a placebo response, but the exact 
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mechanisms remain unknown.
Subjects who were recruited for the studies were healthy in-

dividuals, who had no acute or chronic skin diseases, psychiatric 
disorders, or other underlying medical diseases. Further studies on 
patients with medical conditions that cause itch, especially chronic 
itch, are warranted. The challenges of applying placebo, regardless 
of whether these are open-label or closed label, to patients with 
itch in real-world clinical practice would include moral, ethical, 
and patient-clinician trust relationship issues.

Compared to the field of pain, studies conducted for the placebo 
and nocebo effects on itch have been relatively new and few, and 
far between. The limitations of the present study include the fol-
lowing: a small number of studies were identified, the reviewed 
studies had small sample sizes, and the heterogeneous design of 
these studies made the comparison across studies difficult; mere-
ly studies published in the English language from 2011 to 2021 
were reviewed, which may have caused relevant publications in 
other languages and publications outside of the search period to 
be missed; since the present study was a narrative review, and not 
a systematic review or meta-analysis, the quality of the included 
literature was not assessed.

The use of placebos with verbal suggestion, conditioning, and/
or physical placebos can conceivably lower the risk of systemic 
or local toxicities, when compared to systemic or topical medica-
tions. It would be beneficial to invest more resources in elucidat-
ing the mechanisms of placebo effects, thereby opening doors to 
the development of therapeutic strategies that could ameliorate or 
improve itch in patients who do not respond to conventional mo-
dalities of treatment for itch.

Future directions
Research in the area of placebo and nocebo effects on itch remains 
limited. In order to further investigate the use of these techniques 
in the therapeutic setting, additional research is needed. The pre-
sent studies appeared to support the use of verbal suggestion, con-
ditioning, and/or topical placebos to elicit improvements in itch 
response. Future studies should focus on replicating these results 
in larger study populations, and in subjects with chronic itch condi-
tions. These data would be necessary to move forward in the de-
velopment of techniques that can be used in clinical settings, that 
is, using the placebo effect to improve patient outcomes. Before 
these interventions can be therapeutically used in real world appli-
cations, additional discussions on its ethics and impact on patient-
provider relationship are necessary.

Conclusions
Studies, including those that investigate placebo or nocebo ef-
fects, are difficult to conduct and evaluate, due to multiple varia-
bles, subjectivity, and moral/ethical/trust concerns for various dis-
ease states, including itch. As anticipated, the standardized review 
approach resulted in the limited inclusion of articles. Although 
there were multiple limitations, the present study contributes to 
the literature by gathering small study data to present the potential 
positive impact of the use of placebo to treat itch, and identify fu-
ture areas of study in this field, with the hope of advancing treat-
ment options.
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Introduction
Major depressive disorder (MDD) is among the most disabling and 
potentially life-threatening illnesses globally and has been ranked 
by WHO as the third greatest cause of the burden of disease while 
being projected to rank first by 2030.1,2 MDD is diagnosed when 
an individual exhibits persistent depressive episodes, anhedonia (a 
decrease in interest in pleasurable activities), feelings of worth-
lessness and/or guilt, low energy levels, impaired concentration, 
changes in appetite and sleep patterns, psychomotor retardation, 
agitation, or SI. According to the Diagnostic and Statistical Manu-
al of Mental Disorders, 5th Edition,3 to be diagnosed with MDD, a 
patient must experience at least five of these symptoms, of which 
one is depression or anhedonia and which results in interpersonal 
or occupational impairment.2

The etiology of MDD is believed to be multifactorial and in-
cludes biological, genetic, environmental, and psychosocial fac-
tors. Historically, MDD has been considered to be primarily 
influenced by anomalies in the functions of neurotransmitters, es-

pecially serotonin, norepinephrine, and dopamine. Conventional 
and widely-used antidepressants such as selective serotonin re-
ceptor inhibitors (SSRIs) and serotonin-norepinephrine receptor 
inhibitors (SNRIs) aim at modulating the monoaminergic system. 
However, an important limitation of SSRIs is the delayed onset of 
action, as they typically take about 14 days to begin exerting an 
effect and have the potential to worsen any pre-existing anxiety 
or suicidality during this time, especially in younger populations. 
Other possible side effects which limit the effectiveness and use of 
these conventional therapies may include insomnia, nausea, head-
aches, and sexual dysfunction, which negatively impact the pa-
tient’s quality of life. Moreover, a significant proportion of patients 
fail to respond to treatment at all.4,5

Treatment of refractory MDD
Among those individuals who receive first-line treatment for 
MDD, up to 60% do not achieve remission6 and a significant 
proportion of patients fail to achieve clinically notable benefits 
even with multiple antidepressant interventions. Patients with 
Treatment-Resistant Depression (TRD) continue to have residual 
depressive symptoms that affect both function and quality of life 
and increase the risk of suicide. Thus, alternative intervention for 
refractory cases is an important clinical need.7

TRD is a subset of MDD. While there is a lack of broad con-
sensus on the definition of TRD, it may be described as depressive 
symptomatology that does not remit after two or more regimens 
of first-line antidepressant pharmacotherapy at optimal dose and 
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Abstract
Major depressive disorder (MDD) is a prevalent and highly debilitating illness that causes significant functional impairment 
in many patients. Conventional pharmacotherapy, such as monoaminergic antidepressant agents, usually takes several weeks 
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in resolving serious depressive symptoms including suicidal ideation with antidepressant effects. However, further research 
is needed as, in longer-term use, ketamine has the potential to be abused and certain psychological side effects, including psy-
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ketamine in the treatment of MDD.

Keywords: Ketamine; Esketamine; Pharmacotherapy; Treatment-resistant depres-
sion; Non-conventional antidepressants.
Abbreviations: MDD, major depressive disorder; NMDA, N-methyl-D-aspartate; SI, 
suicidal ideation; TRD, treatment-resistant depression.
*Correspondence to: Helena van Oers, Durban Oncology Centre, Durban 4001, 
South Africa. ORCID: https://orcid.org/0000-0003-2251-9981. Tel: +27 82 469 0035, 
E-mail: fransvo@dtinc.co.za
How to cite this article: van Oers H. Efficacy of Ketamine Therapy in the Treatment 
of Refractory Major Depressive Disorder. J Explor Res Pharmacol 2023;8(4):295–
298. doi: 10.14218/JERP.2023.00023.

http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.14218/JERP.2023.00023
https://crossmark.crossref.org/dialog/?doi=10.14218/JERP.2023.00023&domain=pdf&date_stamp=2023-07-20
https://orcid.org/0000-0003-2251-9981
https://orcid.org/0000-0003-2251-9981
mailto:fransvo@dtinc.co.za


DOI: 10.14218/JERP.2023.00023  |  Volume 8 Issue 4, December 2023296

van Oers H.: Ketamine use in refractory depressionJ Explor Res Pharmacol

duration in the course of a current depressive episode.7 Treatment 
resistance includes persistent symptoms of a low mood, repeated 
depressive episodes, and poor response to medication or other 
therapeutic interventions, including brain stimulation such as elec-
troconvulsive therapy, repetitive transcranial magnetic stimula-
tion, magnetic seizure therapy, deep brain stimulation as well as 
psychotherapy.1,6

Recent studies have shown that patients with MDD having 
episodes of TRD have a significantly higher risk of self-harm, a 
greater than 20% increase in all-cause mortality, increased use of 
health resources, comorbidities such as anxiety disorders, obses-
sive-compulsive disorders, and fatigue when compared to patients 
without TRD episodes. Increased incidence of substance abuse 
was also found to be higher among these patients. One study also 
found that MDD episodes with TRD were of substantially longer 
duration than MDD without TRD.7

Research has suggested that the risk factors for the development 
of TRD include age, age at onset, psychiatric comorbidities, dura-
tion of, a history of abuse, and treatment-related factors.7

The efficacy of ketamine in TRD
In the quest for more rapid-acting treatments, newer theories have 
emerged that suggest MDD may be closely associated with more 
complex neuroregulatory systems, and the examination of novel 
molecular targets beyond the monoamine system has become 
marked in order to gain clinically groundbreaking advances in 
MDD therapeutics.2,8

Recent research involving in vivo brain imaging and studies 
of gene expression has implicated abnormalities in glutamatergic 
signaling in the pathophysiology of MDD and agents that modu-
late this system have significant therapeutic potential. In particular, 
ketamine, a non-competitive NMDA receptor antagonist, which 
has been in use primarily in veterinary and pediatric anesthesia and 
has well-established safety and efficacy qualities as an analgesic 
and anesthetic in these contexts, has been recently studied for use 
off-label as a treatment for psychiatric disorders.

A key factor in ketamine’s efficacy is its role as an efficient glu-
tamate receptor modulator. Ketamine works by blocking NMDA 
receptors in the brain, which increases levels of the neurotrans-
mitter glutamate causing synaptogenesis or neurotransmission 
along new pathways.4 As glutamate is the primary excitatory neu-
rotransmitter in the central nervous system and any disruption in 
glutamate function or the operation of glutamatergic transmission 
may impair neural health, this has a significant effect on limiting 
the progression of many neurodegenerative and psychiatric diseas-
es4,9,10 and affects mood, thought patterns, and cognition11 Moreo-
ver, recent studies have found that ketamine is better at crossing 
the blood-brain barrier than SSRIs, SNRIs and other widely used 
antidepressants.12 This is the first non-monoaminergic agent that 
has demonstrated rapid-onset efficacy in the treatment of MDD 
and thus represents a pharmacologically novel therapeutic option 
for adults with TRD.8,13

Several studies have shown that antidepressant effects in pa-
tients with TRD were observed within approximately 2 hours of 
a single subanesthetic intravenous infusion of ketamine, after the 
acute, dissociative, and euphoric side effects subsided, with the ef-
fects gradually decreasing at seven days post-infusion—although 
twice weekly infusions have been demonstrated to prolong the an-
tidepressant effect for up to 15 days.4 This finding is especially 
significant for individuals needing immediate intervention such 
as those with concurrent SI or patients with personality disorders 

where high levels of suicidality render research on ketamine a pri-
ority.

9,10,14–17

Moreover, ketamine has been demonstrated to be effective 
in other psychiatric contexts, including Bipolar Disorder, Social 
Anxiety, Generalized Anxiety Disorder, Obsessive Compulsive 
Disorder, Post-traumatic Stress Disorder, and eating disorders.10

Routes of administration
Although there is consensus regarding the therapeutic role of keta-
mine in depression, the comparative effects of different formula-
tions of ketamine are less clear and the psychoactive and therapeu-
tic effects have also been found to vary substantially by dose and 
route of administration.10,18 Ketamine is a 1:1 racemate of two en-
antiomers, S-ketamine (esketamine) and R-ketamine. One of these 
enantiomers, S-ketamine (esketamine), binds more potently to the 
NMDA receptor than R-ketamine and thus has an anesthetic effect 
that is approximately 2 times higher but produces less lethargy and 
cognitive impairment.9,19

Ketamine and esketamine are similar as they have the same 
molecular makeup but esketamine has been shown to be not only 
more potent but also better tolerated than ketamine.19 Recent re-
search suggests that esketamine reduces the risk of relapse by be-
tween 50 and 70%.16 The most researched formulations and routes 
of delivery of ketamine in TRD are intranasal (IN) esketamine and 
intravenous or parenteral (oral, sublingual, and IN) racemic keta-
mine.13,20

Route of administration is an important factor in the use of keta-
mine for disorders such as TRD, in which repeated dosing may be 
indicated. Intravenous delivery is widely used in clinical settings 
due to its superior bioavailability and dose control, while esketa-
mine is usually given in the form of a nasal spray.10,21

Some studies suggest oral and intranasal formulations of keta-
mine are optimal for TRD, but there is still little data regarding the 
potential link between the rapidity of onset of action and the route 
of administration.22

Risks of ketamine use
While the clinical effectiveness of ketamine in TRD has been dem-
onstrated, studies show that this varies considerably among patient 
populations, which has implications for general use.23 Many im-
portant factors regarding ketamine use still need to be defined and 
relatively little is known about the overall risks of ketamine use as 
an antidepressant.22,24 There is a dearth of research aimed at iden-
tifying optimal dosing strategies for ketamine use and common 
adverse side-effects of ketamine have been found.25 These include 
transient and dose-dependent dizziness, headache, nausea, blurred 
vision, cardiovascular symptoms, neurotoxicity, cognitive dysfunc-
tion, and dissociative and psychotomimetic effects.10 Such adverse 
effects tend to manifest in acute, low-dose treatments whereas ex-
tended exposure may put patients at risk of neurotoxicity and drug 
dependence. Since ketamine is associated with an increased risk 
of drug abuse, it cannot be recommended in routine clinical prac-
tice.22,25 Ketamine abuse may lead to chronic cystitis, hepatotoxic-
ity, and gall bladder pathology in addition to the psychiatric symp-
toms of impaired cognition and chronic dissociative effects.25

Experience with ketamine administration in patients with TRD 
indicates that higher doses of intravenous ketamine are associated 
with increased rates of treatment-related adverse events such as 
dissociation when compared with lower dosing. Thus, clinicians 
administering ketamine should be aware of the greater probability 
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of adverse events and potential safety issues when administering 
comparatively higher doses of intravenous ketamine.13

Other concerns
Ketamine use for TRD raises a complex set of ethical concerns. 
Given the rising popularity of off-label ketamine use for TRD, 
there is consensus that clinicians and professional bodies must en-
sure that guidelines for safe practice are administered, all experi-
mental and trial data are made known through national registries, 
and that both the risks inherent in ketamine treatment and the pa-
tients themselves continue to be monitored.

In addition, ensuring equitable access to treatment resources is 
imperative for optimal treatment benefit. The associated cost and 
financial accessibility hold socioeconomic and ethical implica-
tions for practice and, where patients do access treatment facilities, 
they may experience different standards of care between treatment 
sites. These are issues that warrant further examination.26

Further directions
Scant research exists into the use of ketamine with other support-
ive interventions such as psychotherapy. It is thought that keta-
mine may assist in the creation of adaptive new neural pathways 
in the brain if treatment occurs within the context of a supportive 
environment and with the inclusion of concurrent psychotherapeu-
tic interventions.27 Some preliminary studies show that adjunct 
psychotherapy may prolong the antidepressant effect of ketamine, 
leading to a less frequent need for administration.25,28

Additionally, ketamine may improve treatment adherence and 
patient engagement, which makes it a valuable psychotherapeu-
tic adjunct.9 Ketamine’s demonstrated antidepressant effect may 
be linked with the psychotherapeutic process, generating rapid 
change, increasing treatment engagement, and lowering the pa-
tient’s defensiveness through relief from distressing symptomol-
ogy.29 As such, further research into this association is warranted.

Conclusions
Current neuroscience research has redefined the perception of TRD 
from a monoaminergic neurotransmitter system model where there 
is dysfunction of specific parts of the brain toward the finding that 
depression is a much more complex network disorder. The need 
for rapid-acting antidepressant therapies at the receptor level with 
targeted synaptogenesis and improved neural connectivity has led 
to studies of agents outside current models. Research on ketamine 
treatment for TRD is still in the relatively early stages but numer-
ous studies have established that ketamine is a safe, effective, fast-
acting, and sustained antidepressant that markedly reduces adverse 
symptoms associated with depression, even in patients who are 
resistant to conventional pharmacotherapy.

Further research into the risks of ketamine use is necessary. A 
lack of guidelines regarding the therapeutic monitoring of keta-
mine therapy for depression has implications for expanding the use 
of this treatment. Dose optimization, alternative routes of admin-
istration, and the role of concurrent pharmacotherapy in the anti-
depressant effects of ketamine are some of the issues that remain 
to be answered. Further work is needed to gain a more reliable 
understanding of ketamine’s abuse liability and its side effects in 
the clinical setting. Moreover, the use of ketamine as an adjunct to 
other forms of anti-depressant therapy, such as concurrent psycho-
therapy, requires further investigation.
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Introduction
Medicinal and recreational cannabis use has increased globally, 
and continuation of this trend is anticipated as its use becomes 
legalized internationally.1,2 Cannabis sativa is composed of over 

100 “cannabinoids,”3,4 but the psychoactive compound delta-9-tet-
rahydrocannabinol (Δ9-THC), isolated in 1964, and the nonpsy-
choactive compound cannabidiol (CBD), isolated in 1940,5 rep-
resent the most abundant components. Consumption of cannabis 
products occurs through diverse routes (inhaled smoke, vaping of 
liquid extracts, resins or waxes, lotions, edibles).6,7 Inhaled can-
nabinoids are rapidly absorbed in the lungs8 but less so by other 
routes (e.g., dermal, oral, rectal).9 Due to their highly lipophilic 
properties, they are stored in adipose tissue for weeks or months 
and are concentrated in the breast milk of rodents and humans.10,11 
CBD products can have beneficial health effects and aid in various 
medical disorders (e.g., Parkinson’s disease, anxiety, and epilep-
sy).12,13 Accumulating evidence also indicates there are neurotoxic 
and reproductive effects from exposure.14–18

Due to increasing cannabis use, exposure to Δ9-THC presents 
concerning health risks because use will likely also increase in 
pregnant or breastfeeding women, affecting all stages of brain and 
neurodevelopment of their offspring.19–24 Along with increased 
legalization, social acceptance, and use, a change in the ratio of 
Δ9-THC to CBD in cannabis has also occurred, leading to a change 
in potency (the Δ9-THC:CBD ratio increased from 14:1 in 1995 to 
80:1 in 2014).25 Ultimately, the extent of cannabis neurotoxicity26 
is dependent on many variables, including the Δ9-THC exposure 
level, purity,25 route of administration,7,9,27 developmental age at 
exposure,23,28–30 health status,31,32 pregnancy status,21,33–36 lacta-
tional status,37,38 and others.39 Further, due to the lipophilic nature 
of these compounds, it has been shown that exposure at low, re-
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Abstract
Cannabis sativa contains phytocannabinoids that are psychoactive and neurotoxic (delta-9-tetrahydrocannabinol: Δ9THC) or 
nonpsychoactive and presumptively neuroprotective (cannabidiol: CBD). Along with rising legalization, availability, and 
demand, the Δ9THC:CBD ratio also has increased. Cannabis legalization means that use will likely increase in pregnant or 
breastfeeding women, affecting all stages of brain and neurodevelopment of their offspring. Δ9THC exposure in utero or dur-
ing development leads to lasting detrimental effects on behavior, cognition, locomotor activity, as well as epigenetic changes. 
Caution is urged with cannabis use. CBD is one of the most actively studied therapies for a broad spectrum of neurological, 
inflammatory, and mental diseases (e.g., Parkinson’s disease, Huntington’s disease, Alzheimer’s disease, schizophrenia) be-
cause of its efficacy, low toxicity, and availability. While data indicate that the benefits of CBD may outweigh its risks, there are 
indications that it poses a risk for adverse effects on neurodevelopment from in-utero exposure as well as detrimental effects on 
male reproduction. Therefore, there is a clear need to continue researching the effects of Δ9THC exposure as well as the optimal 
CBD treatment related to disease management while stressing the need to further characterize possible adverse effects.
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alistically achievable in-vivo concentrations causes specific mo-
lecular targets to be affected, resulting in behavioral or cognitive 
deficits in those with Δ9THC exposure,39–41 or potential benefits 
that greatly improve the health of those with neurodegenerative 
diseases.42–44

In this review, both the risks and benefits of exposure associ-
ated with Δ9THC and CBD were investigated. Notably, the risks 
from CBD exposure, which is usually considered to be safe, are 
associated with reproductive and developmental health effects.45 
Recently, concerns have been raised about CBD use, since it is 
available in numerous over-the-counter products, with little data 
supporting its safety or efficacy.46 The side effects and adverse 
health effects, along with questions regarding the ingredients, are 
often unknown. On the other hand, Δ9THC exposure has been asso-
ciated with adverse effects, depending on the dose, yet the benefits 
of this drug need to be emphasized. These phytocannabinoids were 
selected because they are the dominant compounds in cannabis, 
and they are often used as treatments for physical ailments as well 
as for recreational use. There is a vast amount of literature char-
acterizing these compounds and their effects during development 
and throughout life in both animal and human studies, but it is 
important to present the risks as well as the benefits.

The endocannabinoid system (eCBS)
The eCBS was discovered in the 1990s while investigating the 
mode of action (MOA) of Δ9THC. It is innate and multifaceted, 
affecting metabolic pathways throughout the body [e.g., muscle, 
adipose tissue, gastrointestinal tract, liver, and central nervous sys-
tem (CNS)].47 It helps to shape neuronal connectivity in the brain 
throughout development and into adulthood,48 affecting the gam-
ma-aminobutyric acid (GABA)ergic, glutamatergic, opioid, and 
dopaminergic systems.49 Cell membrane-bound cannabinoid-1 re-
ceptors (CB1Rs) are the most abundant in the brain, while CB2Rs 
are mainly expressed on immune cells (T-cells, macrophages) in 
the periphery or glia/microglia in the brain.47,50 Some researchers 
have suggested that the transient receptor potential cation chan-
nel subfamily V member 1 (TRPV1 or vanilloid receptor 1) could 
be classified as CB3R, as it is activated by CBD.51 Each receptor 

type can act independently; however, depending on their location, 
CB1Rs and CB2Rs (possibly also CB3Rs) can act together, com-
petitively, or in opposite directions, potentially through dimeriza-
tion to regulate physiological effects.

Normally, neurotransmitters [e.g., glutamate, GABA, serotonin 
(5-HT), dopamine (DA), acetylcholine (ACh), or norepinephrine] 
in the CNS are released presynaptically via neuronal stimulation, 
or by G protein-coupled receptors and voltage-gated ion channel 
calcium (Ca+2) and potassium (K+) influx.50,52 However, the eleva-
tion in postsynaptic Ca+2 affected by neurotransmitters/receptors 
through the ion channels [e.g., ionotropic glutamate receptors, N-
methyl-D-aspartate (NMDA), or GABA],53 stimulates endocan-
nabinoid (eCB) postsynaptic biosynthesis.50,52,54

There are two principal eCB ligands [2-arachidonoylglycerol 
(2-AG) and anandamide (AEA)], which are synthesized postsynap-
tically from arachidonic acid by N-acyl phosphatidylethanolamine 
phospholipase D and diacylglycerol lipase alpha/beta (DAGLα/β), 
respectively.55–57 These eCBs are produced, as needed,47 postsyn-
aptically by Ca+2-dependent transacyclase and other enzymes, 
then they migrate from postsynaptic neurons to the presynaptic 
CBR.53,58 Signaling then occurs as CBR couples to the guanosine-
5′-triphosphate (Gi/o)/α-protein subunit dimer58,59 and binds ade-
nyl cyclase to generate cyclic adenosine monophosphate. The 
cascade decreases presynaptic Ca+2 influx by blocking the activity 
of voltage-dependent N-, P/Q- and L-type Ca+2 channels60,61 and 
activation of some K+ channels.53,62 The retrograde eCB (AEA and 
2-AG) transmitters in the brain presynaptically inhibit the release 
of the neurotransmitters GABA,63,64 glutamate,63,65,66 DA,65,67,68 
norepinephrine,69 5-HT67,70 and ACh,71,72 thereby decreasing the 
probability of neurotransmitter release. eCBs are then degraded 
by the serine hydrolase monoacylglycerol lipase (MAGL) in the 
presynaptic cell and fatty acid amide hydrolase (FAAH) located in 
the postsynaptic cell.49,57,73

Figure 1 compares the lipophilic structures of the eCBs (2-AG 
and AEA) with cannabinoids (e.g., Δ9THC and CBD). Δ9THC and 
CBD toxicity or neuroprotection depends on factors such as poten-
cy, exposure, duration/frequency, vehicle, route of administration, 
and species-specific differences. Pharmacokinetic and pharmaco-
dynamic parameters determine the extent of P450 (CYP1A, 3A4, 
2C9, and 2C19) metabolic activation and glucuronidation elimina-

Fig. 1. Lipophilic structures for delta-9-tetrahydrocannabinol (Δ9THC) and cannabidiol (CBD) as well as the endocannabinoids 2-arachidonoylglycerol (2-
AG) and anandamide (AEA). Each compound acts at the G protein-coupled receptors cannabinoid 1 and 2 receptors, which affect neurotransmitter release.
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tion of Δ9THC and CBD.9,74 A tipping point leading to an adverse 
health effect would depend on an individual’s ability to handle 
various exposure loads based on age, genetic makeup, health sta-
tus, and diet, among other influences.75,76 These risk factors are 
often difficult to characterize in humans, since hepatic metabolism 
studies are, by necessity, generally performed in vitro.75

Δ9THC-associated mechanisms and neurotoxicity
To understand the effects of Δ9THC on the brain, it is helpful to 
know which areas are affected. The eCBS/CBRs throughout the 
brain77 help to regulate glutamatergic (excitatory), GABAergic 
(inhibitory),78,79 dopaminergic, and serotonergic neurotransmitter 
release at presynaptic terminals.80,81 The interactions among these 
systems are complex, occurring via direct and indirect stimulation, 
which may or may not be overseen by the eCBS to regulate neu-
roplasticity and excitability toward locomotor activity, cognition 
(learning and memory), executive functions, reward, motivation, 
and neuroendocrine control, among other functions.78,80,82–86 The 
striatum in the basal ganglia contains inhibitory GABAergic medi-
um spiny neurons that are affected by the glutamatergic (AMPAR) 
and dopaminergic (i.e., D1 and D2) receptor inputs from the ven-
tral tegmental area (VTA), substantia nigra (SNc), and prefrontal 
cortex (PFC).87

Table 1 summarizes some of the main brain regions, pathways, 
and neurotransmitters involving the neuronal connections in the 
eCBS and affected by Δ9THC.53,78,80,81,84,85,87–98

Cannabinoid signaling can be disrupted through agonistic activ-
ity of Δ9THC at the CB1Rs throughout areas of the brain. This pro-
cess leads to inhibition of accumulation of 2-AG and AEA in the 
brain.73,99,100 While there are many other neuronal circuits associ-
ated with the eCBS, the ones mentioned above are most frequently 
associated with cannabis.

Δ9THC-associated neurotoxicity in rodent and nonhuman pri-
mate models
Δ9THC exposure throughout all life stages is associated with ef-
fects on behavior, cognition, locomotor activity, birth weight, 
learning, and other adverse effects.101–104 Cannabis smoke was 
listed as a reproductive toxicant on 3 January 2020, under Cali-
fornia’s Proposition 65.104 However, to control for the dose intake 
and other technical issues, many neurodevelopmental studies per-
formed in animals used intravenous (i.v.) Δ9THC administration. 
Although this is not a likely exposure scenario for humans, the 
immediate absorption by i.v. could be compared to pulmonary ex-
posure by inhalation.105,106 Subcutaneous (s.c.), oral (i.e., gavage), 
and intraperitoneal (i.p.) administration are more slowly absorbed 
and are subject to local metabolic processes prior to entering the 
blood stream.107,108 Other considerations contributing to potential 
variabilities in evaluating the study results are as follows: 1) often 
only a single exposure dose was used, limiting potential observa-
tions of a dose–response relationship; 2) Δ9THC dosing vehicles 
varied among studies; 3) different species/strains of rodent were 

Table 1.  Brain regions and pathways affected by endocannabinoids, Δ9-THC and/or CBD

Neurotransmitter/Pathway Brain region associations Behavior/processes involving eCBS Reference

Dopamine: DA

Mesolimbic DA from ventral tegmental area 
(VTA; midbrain) → ventral striatum 
(amygdala, pyriform cortex, lateral 
septal nuclei, nucleus accumbens)

Reward-related cognition (e.g., 
incentive: wanting; pleasure: 
liking; positive reinforcement, 
associative learning) & emotion

78,80,81,88–91

Mesocortical DA from VTA (midbrain) → 
prefrontal cortex + hippocampus

Cognition: executive function (e.g., 
planning, attention, working memory, 
planning, self-control, etc.), emotion

Nigrostriatal DA from substantia nigra (pars compacta; 
substantia nigra SNc: midbrain) → dorsal 
striatum (i.e., caudate nucleus + putamen)

Neuromotor function, reward-related 
cognition, associative learning

Tuberoinfundibular DA from the hypothalamic arcuate 
(infundibular) + paraventricular nucleus 
→ pituitary gland median eminence

Inhibits the release of prolactin.

Glutamate

Glutamatergic Hippocampus, neocortex and over 
90% of synapses in human brain.

Excitatory effects on VTA & SNc neurons, 
memory, learning, neural communication

53,90,92,93

ɣ-Aminobutyric Acid: GABA

GABAergic Hippocampus, thalamus, basal 
ganglia, hypothalamus, brainstema

Inhibitory effects on VTA 
and SNc neurons

90,94–96

Serotonin: 5HT

Serotonergic Dorsal raphe nuclei, cortex, hippocampus Modulator of receptors with 
effects depending on subtype (i.e., 
biphasic effect on VTA neurons)

80,84,85,97,98

aGABAergic transmission includes inhibitory median spiny neurons in the striatum/basal ganglia affected by the glutamatergic (AMPAR) and dopaminergic (D1 and D2) receptor 
inputs from the VTA, SNc, and PFC.87
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used; 4) different exposure scenarios were used; and 5) many dif-
ferent laboratories contributed to the list of studies.

Gestational exposure to Δ9THC
The eCBS is involved in the earliest developmental stages, in-
cluding fertilization, implantation, and neuronal progenitors in 
the brain, leading to migration, morphogenesis, and axonal guid-
ance.94,109,110 The effects of Δ9THC on these processes can be 
seen in rodents’ pulmonary exposure by inhalation.105,106 Admin-
istration via a s.c., oral, or i.p. route is more slowly absorbed and 
is subject to local metabolic processes prior to entering the blood 
stream.107,111 Δ9THC has profound effects on CB1Rs in areas of 
the brain regulating GABA, 5-HT, glutamate neurotransmitters, 
and DA release, influencing, for example, the development of 
locomotor activity, cognition, learning, memory, and emotional 
regulation (Table 2).11,29,34,112–141 Notably, the lowest doses of 
Δ9THC (0.15 mg/kg/day) in the offspring of Long-Evans rats 
treated in utero affected preproenkephalin, an endogenous opioid 
precursor in the nucleus accumbens, amygdala, and striatum, in 
addition to showing evidence of decreased cognition and other 
behavioral effects.112–114 Treatment in utero or from paternal ex-
posure during a full cycle of sperm development, even at low 
Δ9THC doses (0.15 mg/kg/day), resulted in developmental defi-
cits and epigenetic transmission.112,113,115–117 Male Wistar adult 
rats treated throughout sperm development (gavage, 2.0 mg/kg/
day) had offspring with affected locomotor activity, feeding be-
havior, and visual operant signaling.118 Moreover, epidemiologi-
cal evidence supported findings that cannabis exposure during 
gestation or during male sperm development results in children 
with cognitive, motor, and behavioral (including severe psycho-
ses) effects.33,142–145 Infants with gestational exposure to canna-
bis may show an exaggerated startle response or an inability to 
adapt to novel stimuli.146,147 Furthermore, women who used can-
nabis during pregnancy had an increase in fetal deaths, prema-
ture births, heart rhythm disorders, and fetal intrauterine growth 
restrictions.36

In support of the gestational exposure findings, a meta-analysis 
was performed on the behavioral effects in animal offspring ex-
posed to Δ9THC during gestation and lactation.148 A compilation 
and meta-analysis of behavior in offspring from 15 selected stud-
ies in Long-Evans, Sprague-Dawley, or Wistar female and/or male 
rats exposed from mothers exposed via oral, i.v., or s.c. adminis-
tration indicated significant effects on cognitive, locomotor, and 
emotional behavior.

Postnatal exposure to Δ9THC
Postnatal exposures to young C57BL/6J male mouse pups re-
sulted in behavioral effects from Δ9THC treatment at 1.0 mg/kg/
day administered s.c.119 This and other studies performed in male 
and female Wistar rats at 2.0 mg/kg/day (s.c.)11 or 10 mg/kg/day 
(gavage)149 included effects on anxiety and neurodevelopmental 
deficits similar to those seen in autism, epilepsy, and schizophre-
nia.11,119,149 Perinatal exposure in children would likely be from 
nursing, secondhand smoke, or accidental ingestion, causing long-
term effects.37,150 The transfer of cannabis in the milk to nursing 
babies was shown to affect DA receptors, resulting in hyperactiv-
ity, poor coordination, and cognitive function and leading to an 
increased risk of future drug abuse.37,150 For example, GABA is 
primarily excitatory in early development and then it switches to 
inhibitory postnatally. Disruption of this process in humans may 
result in neurodevelopmental patterns affecting chronic pain, neu-
roplasticity, and psychiatric diseases (e.g., autism, epilepsy, and 

schizophrenia).11,151 Data indicate that perinatal cannabis exposure 
increases the risk of future drug use.152

Adolescent exposure to Δ9THC
Exposure to Δ9THC i.p. in Long-Evans and Wistar male rats 
throughout adolescence at low doses (1 or 1.5 mg/kg/day) showed 
disrupted neural development in the PFC and hippocampus result-
ing in effects on neuroplasticity, cognition, social interactions, 
memory and others.29,120 Similar effects (i.e., increased: CB1R 
density, anxiety, learning deficits, anhedonia) were observed at 
higher doses (2.5–10 mg/kg/day) in Long-Evans females, male 
and female Sprague-Dawley rats and male CD1 mice receiving 
various dosing regimens (Table 2).120–123,153 Δ9THC treatment in 
adolescents disrupted development of brain areas (e.g., PFC) asso-
ciated with adverse behaviors like schizophrenia in humans, which 
often occurs in adolescence.155 Adolescence is a stage of peak eCB 
(2AG and AEA) and CB1R expression.156 The brain is still devel-
oping and is at heightened risk for disruption of normal neurode-
velopmental processes.157,158 Where pre- or postnatal exposures 
may be involuntary in developing young, adolescence is where 
preteens and teens may begin to experiment with cannabis on their 
own.159 Vaping cannabis has become one of the most preferred 
methods of consumption, that will not only increase the concentra-
tion of Δ9THC but also potentially increase exposure to residues of 
pesticides used on cannabis crops.99,160–162 Cannabis use in adoles-
cents greatly increases the risk of psychosis by 3–4-fold and has 
been shown to lower the age of schizophrenia onset.163,164 Further, 
adolescent cannabis use will increase the probability of future drug 
use,165 as shown by evidence from animal and epidemiological 
studies.152,166,167

Adult exposure to Δ9THC
Acute adult effects in Long-Evans male rats as well as C57BL/6Arc 
and CD1 male mice showed behavioral effects (attention and 
learning, decreased anxiety and locomotor activity) at low Δ9THC 
doses (i.p.: 0.25, 0.8, or 1.0 mg/kg/day; Table 2).124–127 Notably, 
these studies used 2–8 treatment levels and could therefore estab-
lish a dose–response relationship. C57BL/6J male mice treated 
at 10 mg/kg/day also experienced a decreased thermic response 
and increased catalepsy and analgesia.126 This study demonstrat-
ed the “cannabinoid tetrad”: increased catalepsy, hypomobility, 
hypothermia, and antinociception.128 At the low acute doses, the 
animals showed decreased anxiety; but at higher doses graduating 
from 1 to 3 to 10 mg/kg/day at 7-day intervals, the animals had 
increased anxiety measures with both acute and chronic exposures 
in male Wistar rats.129 Human studies also showed that cannabis 
use versus nonuse was associated with an earlier onset of psy-
choses, death by suicide, depression, mania, anhedonia, cognitive 
deficits, and anxiety/paranoia as well as brain effects (decreases in 
glutamine, affected DA, and decreased hippocampal volume (sys-
tematic review).168 This review also reported associated harmful 
effects of exposure on driving, stroke, pulmonary function, vision, 
and negative drug-drug interactions. With cannabis legalization, 
it is likely that there will be more health-related deficits and an 
increased need for public and clinical policy changes. Table 2 lists 
the lowest-observed-effect levels (LOELs) reported from each in-
vivo study (mg/kg/day).

Nonhuman primate exposure to Δ9THC
Studies in nonhuman primates have been performed in pregnant 
animals. Rhesus macaques were fed Δ9THC in a cookie at 2.5 g/7 
kg at gestation day (GD) 0–155.169 There were decreases in the 

https://doi.org/10.14218/JERP.2023.00017


DOI: 10.14218/JERP.2023.00017  |  Volume 8 Issue 4, December 2023 303

Silva M.H.: Neurotoxic or protective cannabis components J Explor Res Pharmacol

Ta
bl

e 
2.

  N
eu

ro
to

xi
c 

an
d 

be
ha

vi
or

al
 e

ffe
ct

s f
ro

m
 Δ9

TH
C 

tr
ea

tm
en

t d
ur

in
g 

de
ve

lo
pm

en
t i

n 
an

im
al

 st
ud

ie
s

An
im

al
 st

ra
in

/S
ex

/D
ur

a-
tio

n/
Do

se
/V

eh
ic

le
Da

y 
te

st
ed

Ef
fe

ct
s

LO
EL

 (m
g/

kg
/d

ay
)

Re
fe

re
nc

e

Δ9
TH

C 
in

 a
ni

m
al

 st
ud

ie
s

Ge
st

at
io

na
l t

re
at

m
en

t

Lo
ng

-E
va

ns
 D

am
: G

D 
5-

PN
D 

2;
 F

1 
fo

st
er

ed
 P

N
D 

2–
21

. D
os

e:
 i.

v. 
0.

15
 

m
g/

kg
/d

ay
. V

eh
ic

le
: T

w
ee

n 
80

/s
al

in
e

F1
 M

/F
 P

up
s:

 P
N

D 
2 

or
 P

N
D 

62
, A

du
lt

N
Ac

: ↓
st

ria
ta

l D
RD

2 
m

RN
A 

ex
pr

es
sio

n;
 ↓

DR
2 

re
ce

pt
or

 &
 

bi
nd

in
g 

sit
es

; e
pi

ge
ne

tic
 re

gu
la

tio
n 

of
 D

RD
2 

m
RN

A 
ex

pr
es

sio
n 

di
sr

up
te

d;
 a

ffe
ct

ed
 D

A 
re

ce
pt

or
 g

en
e 

re
gu

la
tio

n.
 S

ig
ni

fic
an

ce
: 

In
cr

ea
se

 in
 se

ns
iti

vi
ty

 to
 o

pi
at

e 
re

w
ar

d 
in

 a
du

lth
oo

d

0.
15

*
11

2

Lo
ng

-E
va

ns
 D

am
: G

D 
5-

PN
D 

2 
fo

st
er

ed
 P

N
D 

2-
21

. D
os

e:
 i.

v. 
0.

15
 

m
g/

kg
/d

ay
. V

eh
ic

le
: T

w
ee

n 
80

/s
al

in
e

F1
 M

 P
up

s P
N

D 
55

, A
du

lt
↓

PE
N

K 
m

RN
A 

ex
pr

es
sio

n 
N

Ac
 (p

up
), 

↑
PE

N
K 

in
 N

Ac
 &

 a
m

yg
da

la
 

(a
du

lts
); 

↑
Se

lf-
ad

m
in

ist
er

 h
er

oi
n;

 ↓
la

te
nc

y 
be

tw
ee

n 
ac

tiv
e 

le
ve

r p
re

ss
; 

↑
ac

tiv
e 

le
ve

r p
re

ss
; ↑

re
sp

on
se

s o
n 

st
re

ss
 te

st
; ↑

to
ta

l r
es

po
ns

es
 o

n 
ac

tiv
e 

le
ve

r o
n 

1s
t &

 la
st

 e
xt

in
ct

io
n 

da
ys

; ↓
di

st
an

ce
 tr

av
el

ed
 d

ur
in

g 
ac

qu
isi

tio
n 

&
 m

ai
nt

en
an

ce
. S

ig
ni

fic
an

ce
: I

nc
re

as
ed

 o
pi

oi
d 

se
ek

in
g 

be
ha

vi
or

 (m
ot

iv
at

io
n/

re
w

ar
d)

 &
 st

re
ss

 re
sp

on
se

 in
 a

du
lth

oo
d

0.
15

*
11

4

Lo
ng

-E
va

ns
 D

am
 e

ve
ry

 3
rd

 d
ay

; 
PN

D 
28

–4
9;

 m
at

ed
 P

N
D 

64
–6

8;
 

F1
 fo

st
er

ed
. D

os
e:

 i.
p.

 1
.5

 m
g/

kg
/

da
y.

 V
eh

ic
le

: s
al

in
e/

Tw
ee

n 
80

F1
 M

/F
 P

up
s:

 P
N

D 
35

 (A
do

le
sc

en
ce

) 
or

 P
N

D 
62

 A
du

lt

St
ria

ta
l d

ys
re

gu
la

tio
n 

of
 C

B1
R 

ge
ne

 e
xp

re
ss

io
n,

 a
ffe

ct
in

g 
st

ria
ta

l 
pl

as
tic

ity
; v

en
tr

al
 to

 d
or

sa
l s

tr
ia

tu
m

 d
isr

up
tio

ns
 b

et
w

ee
n 

ad
ol

es
ce

nc
e 

&
 a

du
lth

oo
d;

 F
 ↓

no
ve

lty
 se

ek
in

g.
 S

ig
ni

fic
an

ce
: S

up
po

rt
s r

el
ev

an
ce

 
to

 a
ge

-d
ep

en
de

nt
 v

ul
ne

ra
bi

lit
y 

fo
r n

eu
ro

ps
yc

hi
at

ric
 d

iso
rd

er
s

1.
5*

13
0

Lo
ng

-E
va

ns
 D

am
 e

ve
ry

 3
rd

 d
ay

 
PN

D 
28

–4
9;

 m
at

ed
 P

N
D 

64
–6

8;
 

F1
 fo

st
er

ed
. D

os
e:

 i.
p.

 1
.5

 m
g/

kg
/

da
y.

 V
eh

ic
le

: s
al

in
e/

Tw
ee

n 
80

F1
 M

/F
 P

up
s:

 P
N

D 
35

 (A
do

le
sc

en
ce

) 
or

 P
N

D 
62

, A
du

lt

Ep
ig

en
et

ic
 e

ffe
ct

s &
 a

lte
re

d 
CB

1R
 m

RN
A 

ex
pr

es
sio

ns
 in

 N
Ac

 a
ss

oc
ia

te
d 

w
ith

 g
lu

ta
m

at
er

gi
c 

sy
st

em
 re

gu
la

tio
n;

 F
 ↓

 lo
co

m
ot

or
 a

ct
iv

ity
. S

ig
ni

fic
an

ce
: 

Cr
os

s-
ge

ne
ra

tio
na

l e
pi

ge
ne

tic
 v

ul
ne

ra
bi

lit
y 

to
 d

ru
g 

ab
us

e

1.
5*

11
7

W
ist

ar
 D

am
: G

D 
15

–P
N

D 
9.

 
Do

se
: G

av
ag

e 
3.

0 
m

g/
kg

/
da

y.
 V

eh
ic

le
: s

es
am

e 
oi

l

F1
 M

 P
up

: P
N

D 
90

, A
du

lt
Di

sr
up

te
d 

hi
pp

oc
am

pa
l G

AB
Ae

rg
ic

 sy
st

em
; ↓

GA
BA

 o
ut

flo
w

 &
 u

pt
ak

e 
in

 
hi

pp
oc

am
pu

s;
 ↓

 C
B1

 b
in

di
ng

; c
og

ni
tiv

e 
im

pa
irm

en
ts

. S
ig

ni
fic

an
ce

: L
on

g 
te

rm
 c

og
ni

tiv
e 

de
fic

ie
nc

y 
&

 d
isr

up
te

d 
GA

BA
 n

eu
ro

na
l d

ev
el

op
m

en
t

5.
0*

11
5

W
ist

ar
 D

am
: G

D 
5–

14
, 1

6,
 1

8,
 2

1 
&

 P
N

D 
1 

&
 5

. D
os

e:
 G

av
ag

e 
5.

0 
m

g/
kg

/d
ay

. V
eh

ic
le

 se
sa

m
e 

oi
l

F1
 M

/F
 G

D 
14

, 1
6,

 1
8,

 2
1 

+ 
PN

D 
1 

&
 5

 N
eo

na
te

Di
sr

up
te

d 
ty

ro
sin

e 
hy

dr
ox

yl
as

e 
ge

ne
 a

ct
iv

at
io

n 
(ra

te
 li

m
iti

ng
 in

 D
A 

pr
od

uc
tio

n)
; ↑

 D
O

PA
CL

 D
A 

m
et

ab
ol

ite
 fo

re
br

ai
n.

 S
ig

ni
fic

an
ce

: T
yr

os
in

e 
hy

dr
ox

yl
as

e 
pl

ay
s a

 la
rg

e 
pa

rt
 in

 n
eu

ro
de

ve
lo

pm
en

t t
hr

ou
gh

 D
A 

pr
od

uc
tio

n

5.
0*

13
1

W
ist

ar
 D

am
: G

D 
7–

22
. D

os
e:

 i.
p.

 3
 

m
g/

kg
/d

ay
. V

eh
ic

le
: N

ot
 st

at
ed

F1
 M

/F
 B

eh
av

io
r 

PN
D 

70
–1

00
M

: ↓
Ti

m
e 

on
 li

gh
t s

id
e 

of
 te

st
 b

ox
 (↑

an
xi

et
y)

; ↑
tr

an
sit

io
n 

to
 li

gh
t; 

↓
Ti

m
e 

in
 

op
en

 a
rm

 o
f E

PM
; ↑

VT
A 

sp
ik

e 
ac

tiv
ity

; ↓
DA

 &
 N

M
DA

R2
B 

PN
D 

21
; ↑

GA
D8

7 
PN

D 
21

; F
: ↑

GA
D6

7,
 v

GL
U

T1
-2

; P
PA

Rα
 &

 P
PA

Rϒ
1-

2 
&

 N
M

DA
R2

B 
in

 th
e 

m
es

ol
im

bi
c 

sy
st

em
 (V

TA
-N

Ac
); 

M
/F

: ↑
Al

te
re

d 
fa

tt
y 

ac
id

 c
on

ce
nt

ra
tio

ns
 in

 th
e 

nu
cl

eu
s a

cc
um

be
ns

 c
or

e 
&

 sh
el

l u
p 

to
 P

N
D 

12
0 

(M
) o

r P
N

D 
21

 (F
). 

Si
gn

ifi
ca

nc
e:

 
Se

x 
di

ffe
re

nc
e 

w
ith

 M
 m

or
e 

af
fe

ct
ed

 th
an

 F
; F

at
ty

 a
ci

d 
de

fic
its

 d
isr

up
t t

he
 

DA
/G

LU
T/

GA
BA

er
gi

c 
ne

ur
ot

ra
ns

m
iss

io
ns

 a
ffe

ct
in

g 
ne

ur
od

ev
el

op
m

en
t

3.
0*

13
2

SD
 D

am
: G

D 
5–

PN
D 

2 
fo

st
er

-n
ur

se
d 

PN
D 

2–
21

. D
os

e:
 i.

v. 
0.

15
 m

g/
kg

/
da

y.
 V

eh
ic

le
: T

w
ee

n8
0/

sa
lin

e

F1
 M

/F
 P

up
s:

 P
N

D 
22

, 4
5 

&
 6

0 
W

ea
ni

ng
, 

ad
ol

es
ce

nt
, a

du
lt

Pu
p:

 ↓
an

xi
et

y:
 ↓

ac
tiv

e 
pl

ac
e 

av
oi

da
nc

e 
ac

qu
isi

tio
n;

 ↑
ac

tiv
e 

pl
ac

e 
av

oi
da

nc
e 

re
ve

rs
al

 p
ha

se
 e

nt
rie

s;
 A

du
lt:

 ↓
at

te
nt

io
n 

(a
cq

ui
sit

io
n,

 re
ve

rs
al

 &
 d

ist
ra

ct
io

n)
 

&
 c

og
ni

tio
n.

 S
ig

ni
fic

an
ce

: D
ec

re
as

ed
 a

nx
ie

ty
, a

tt
en

tio
n 

&
 c

og
ni

tiv
e 

fu
nc

tio
n

0.
15

*
11

3 (c
on

tin
ue

d)

https://doi.org/10.14218/JERP.2023.00017


DOI: 10.14218/JERP.2023.00017  |  Volume 8 Issue 4, December 2023304

Silva M.H.: Neurotoxic or protective cannabis componentsJ Explor Res Pharmacol
An

im
al

 st
ra

in
/S

ex
/D

ur
a-

tio
n/

Do
se

/V
eh

ic
le

Da
y 

te
st

ed
Ef

fe
ct

s
LO

EL
 (m

g/
kg

/d
ay

)
Re

fe
re

nc
e

Δ9
TH

C 
in

 a
ni

m
al

 st
ud

ie
s

SD
 D

am
: G

ro
up

 1
: G

D 
5–

20
. G

ro
up

 
2:

 G
D 

5–
20

 +
 P

N
D 

15
. D

os
e:

 s.
c.

 
2.

0 
m

g/
kg

/d
ay

; P
N

D 
15

 2
.5

 m
g/

kg
/d

ay
. V

eh
ic

le
: T

w
ee

n8
0/

sa
lin

e

F 
F1

 P
up

s:
 G

ro
up

s 1
 &

 
2:

 P
N

D 
15

–2
8 

Ju
ve

ni
le

Gr
ou

p 
1 

&
 2

: M
al

e 
be

ha
vi

or
s a

ffe
ct

ed
: ↑

di
st

an
ce

 tr
av

el
ed

; ↓
st

re
tc

h-
at

te
nd

 p
os

tu
re

s;
 G

ro
up

 2
: ↓

 la
te

nc
y 

in
 p

as
siv

e 
av

oi
da

nc
e 

tr
ai

ni
ng

; ↑
AM

PA
 

fr
om

 D
A 

ce
lls

; ↓
st

re
tc

h-
at

te
nd

 p
os

tu
re

s;
 ↓

DA
 2

40
 m

in
 p

os
ta

cu
te

 d
os

e.
 

Si
gn

ifi
ca

nc
e:

 B
eh

av
io

ra
l e

ffe
ct

s f
ro

m
 m

es
ol

im
bi

c 
(N

Ac
) d

op
am

in
er

gi
c 

di
sr

up
tio

ns
 a

re
 g

re
at

er
 in

 m
al

es
 &

 g
re

at
er

 a
fte

r Δ9
TH

C 
ch

al
le

ng
e

2.
0*

13
31

SD
 D

am
: G

D 
5–

GD
 2

0.
 D

os
e:

 s.
c.

 2
.0

 
m

g/
kg

/d
ay

. V
eh

ic
le

 T
w

ee
n 

80
/s

al
in

e
F1

 M
/F

 P
up

s:
 Te

st
s d

on
e 

PN
D 

24
–2

8,
 Ju

ve
ni

le
VT

A 
DA

 n
eu

ro
n 

ef
fe

ct
s:

 ↑
 fi

rin
g 

ra
te

; ↓
 c

el
ls/

tr
ac

k;
 ↓

 sp
ik

es
/b

ur
st

, 
bu

rs
t r

at
e;

 ↓
af

te
r h

yp
er

po
la

riz
at

io
n 

pe
rio

d;
 ↑

DR
D2

 se
ns

iti
vi

ty
 &

 a
cu

te
 

st
re

ss
 v

ul
ne

ra
bi

lit
y;

 ↑
 a

ct
iv

ity
, ↓

 P
PI

 a
ve

ra
ge

 in
 a

cu
te

 re
st

ra
in

t &
 fo

rc
ed

 
sw

im
 te

st
. S

ig
ni

fic
an

ce
: S

en
so

rim
ot

or
 g

at
in

g 
de

fic
its

 le
ad

in
g 

to
 a

n 
in

cr
ea

se
 in

 su
sc

ep
tiv

ity
 to

 st
im

ul
i t

rig
ge

rin
g 

ps
yc

ho
tic

-li
ke

 b
eh

av
io

rs

2.
0*

13
4

SD
 M

 A
du

lt 
28

 d
ay

s;
 m

at
ed

 2
 d

ay
s 

po
st

 d
os

e.
 D

os
e:

 s.
c.

 2
.0

, 4
.0

 m
g/

kg
/d

ay
. V

eh
ic

le
: T

w
ee

n 
80

/s
al

in
e

F1
 M

 P
up

s:
 P

N
D 

30
, 6

0,
 1

00
 &

 1
50

 
Ad

ol
es

ce
nt

, a
du

lt

↓
AC

h 
ac

tiv
ity

; ↑
 C

hA
T:

 A
Ch

 b
io

m
ar

ke
r f

or
 n

um
be

r o
f A

Ch
 te

rm
in

al
s i

n 
st

ria
tu

m
; ↓

 C
hA

T 
hi

pp
oc

am
pu

s;
 ↓

HC
3/

Ch
AT

 (A
Ch

 a
ct

iv
ity

 in
de

x)
 n

 fr
on

ta
l/

pa
rie

ta
l c

or
te

x 
&

 st
ria

tu
m

. S
ig

ni
fic

an
ce

: P
at

er
na

l Δ9
TH

C 
le

ad
s t

o 
di

sr
up

tio
ns

 
in

 d
ev

el
op

m
en

ta
l t

ra
je

ct
or

y 
of

 A
Ch

 p
ot

en
tia

lly
 a

ffe
ct

in
g 

at
te

nt
io

n

2.
0

11
6

W
ild

-t
yp

e 
M

ou
se

 D
am

: G
D 

12
.5

–
16

.5
. D

os
e:

 i.
p.

 3
.0

 m
g/

kg
/d

ay
. 

Ve
hi

cl
e:

 sa
lin

e/
DM

SO
/T

w
ee

n 
80

F1
 M

/F
 P

up
s:

 P
N

D 
20

; 2
 

m
on

th
s;

 Ju
ve

ni
le

, a
du

lt
CB

1R
 →

af
fe

ct
ed

 c
or

tic
al

 n
eu

ro
n 

sy
na

pt
ic

 si
gn

al
in

g 
de

ve
lo

pm
en

t →
af

fe
ct

ed
 

co
nn

ec
tiv

ity
 in

 c
or

tic
al

 G
AB

Ae
rg

ic
 &

 g
lu

ta
m

at
er

gi
c 

sy
st

em
s →

 ↓
fin

e 
m

ot
or

 
sk

ill
s;

 ↓
 sk

ill
ed

 m
ot

or
 fu

nc
tio

n;
 2

 m
on

th
s:

 ↓
 su

cc
es

s i
n 

pe
lle

t r
et

rie
ve

d 
in

 sk
ill

ed
 st

ep
s t

es
t; 

↑
se

izu
re

. S
ig

ni
fic

an
ce

: D
isr

up
te

d 
CB

1 
sig

na
lin

g 
le

ad
in

g 
to

 d
isr

up
te

d 
gl

ut
am

at
e 

&
 G

AB
A 

sig
na

lin
g 

le
ad

s t
o 

in
cr

ea
se

d 
su

sc
ep

tib
ili

ty
 to

 se
izu

re
s a

nd
 c

or
tic

o-
sp

in
al

 fu
nc

tio
n.

in
 a

du
lth

oo
d

3.
0*

13
5

C5
7B

l/6
 M

ou
se

 D
am

: G
D 

14
.5

–1
8.

5.
 D

os
e:

 i.
p.

 3
.0

 m
g/

kg
/d

ay
. V

eh
ic

le
: D

M
SO

F1
 M

/F
: G

D 
18

.5
; P

N
D 

10
 

&
 1

20
, F

et
al

, p
up

, a
du

lt
↓

 C
B1

R 
&

 m
isr

ou
te

d 
hi

pp
oc

am
pa

l C
B1

R 
af

fe
re

nt
s,

 ↑
CB

1R
 d

en
sit

y 
in

 st
ria

tu
m

; 
Im

pa
ire

d 
LT

D 
in

 p
yr

am
id

al
 c

el
l s

yn
ap

sis
; ↓

 sy
na

pt
ic

 p
la

st
ic

ity
 in

 th
e 

co
rt

ic
al

 
ci

rc
ui

tr
y;

 Im
pa

ire
d 

co
rt

ic
al

 a
xo

na
l d

ev
el

op
m

en
t; 

↓
2-

AG
 si

gn
al

in
g,

 ↓
 C

B1
R 

&
 ↑

 M
AG

L 
ex

pr
es

sio
n,

 ↓
DA

GL
; a

bn
or

m
al

 g
ro

w
th

 c
on

es
 &

 c
yt

os
ke

le
to

n 
in

 
ax

on
al

 re
gi

on
. S

ig
ni

fic
an

ce
: A

bn
or

m
al

 a
xo

na
l d

ev
el

op
m

en
t i

n 
gr

ow
th

 c
on

e 
di

sr
up

ts
 n

eu
ro

na
l c

irc
ui

tr
y, 

m
em

or
y 

en
co

di
ng

, c
og

ni
tio

n 
&

 e
xe

cu
tiv

e 
sk

ill
s

3.
0*

13
6

Po
st

na
ta

l T
re

at
m

en
t

W
ist

ar
 D

am
: P

N
D 

1–
10

. D
os

e:
 

s.
c.

2.
0 

m
g/

kg
/d

ay
. V

eh
ic

le
: 

DM
SO

/c
re

m
op

ho
re

/s
al

in
e

F1
 M

/F
 P

up
s:

 P
N

D 
10

, 1
5,

 2
0;

 9
–2

1 
Pr

ew
ea

ni
ng

, j
uv

en
ile

↓
Bo

dy
w

ei
gh

t g
ai

n;
 G

AB
A 

ex
ci

ta
to

ry
 to

 in
hi

bi
to

ry
 sw

itc
h 

in
 

PF
C 

(e
CB

 d
isr

up
tio

n)
; ↓

up
re

gu
la

tio
n 

&
 e

xp
re

ss
io

n 
of

 K
CC

2 
(K

+ 
tr

an
sp

or
te

r)
, V

oc
al

iza
tio

ns
 ↑

in
 fr

eq
ue

nc
y 

(k
HZ

). 
Si

gn
ifi

ca
nc

e:
 D

el
ay

ed
 

de
ve

lo
pm

en
t o

f G
AB

A 
sw

itc
h 

le
ad

s t
o 

se
ns

or
im

ot
or

 g
at

in
g 

de
fic

its
, 

po
te

nt
ia

l a
ut

ism
, e

pi
le

ps
ie

s,
 sc

hi
zo

ph
re

ni
a-

lik
e 

be
ha

vi
or

.

2*
11

W
ist

ar
 M

 A
du

lt:
 1

2 
da

ys
 m

at
ed

 
to

 u
nt

re
at

ed
 F.

 D
os

e:
 G

av
ag

e 
2.

0 
m

g/
kg

/d
ay

. V
eh

ic
le

: 
Et

O
H/

Tr
ito

nX
10

0/
sa

lin
e

F1
 M

/F
 P

up
s:

 P
N

D 
28

–1
40

, A
do

le
sc

en
t, 

ad
ul

t
↑

Ha
bi

tu
at

io
n 

of
 lo

co
m

ot
or

 a
ct

iv
ity

, N
ov

el
ty

 su
pp

re
ss

ed
 

fe
ed

in
g:

 ↓
la

te
nc

y 
to

 b
eg

in
 e

at
in

g;
 ↓

Vi
su

al
 o

pe
ra

nt
 si

gn
al

. 
Si

gn
ifi

ca
nc

e:
 Im

pa
ire

d 
op

er
an

t a
tt

en
tio

n 
in

to
 a

du
lth

oo
d

2*
11

8

SD
 Ju

ve
ni

le
 M

/F
: P

N
D 

10
–1

6.
 

Do
se

: G
av

ag
e 

10
 m

g/
kg

/
da

y.
 V

eh
ic

le
: c

or
n 

oi
l

F1
 M

/F
 P

up
s:

 P
N

D 
29

 
&

 3
8,

 A
do

le
sc

en
t

↓
Bo

dy
w

ei
gh

t g
ai

n;
 H

ig
h 

Ill
um

in
at

io
n:

 ↑
en

tr
ie

s &
 ti

m
e 

in
 o

pe
n 

ar
m

; L
ow

 Il
lu

m
in

at
io

n:
 ↑

st
re

tc
h 

at
te

nd
 p

os
tu

re
; ↑

he
ad

 d
ip

s;
 ↓

 
ex

pl
or

at
io

n,
 ↑

fr
eq

ue
nc

y 
of

 n
ap

e 
at

ta
ck

s;
 ↑

tim
e 

&
 fr

eq
ue

nc
y 

pl
ay

 
fig

ht
in

g.
 S

ig
ni

fic
an

ce
: A

lte
re

d 
so

ci
al

 b
eh

av
io

r i
n 

ad
ol

es
ce

nc
e.

10
*

13
7

Ta
bl

e 
2.

 (c
on

tin
ue

d)

(c
on

tin
ue

d)

https://doi.org/10.14218/JERP.2023.00017


DOI: 10.14218/JERP.2023.00017  |  Volume 8 Issue 4, December 2023 305

Silva M.H.: Neurotoxic or protective cannabis components J Explor Res Pharmacol

An
im

al
 st

ra
in

/S
ex

/D
ur

a-
tio

n/
Do

se
/V

eh
ic

le
Da

y 
te

st
ed

Ef
fe

ct
s

LO
EL

 (m
g/

kg
/d

ay
)

Re
fe

re
nc

e

Δ9
TH

C 
in

 a
ni

m
al

 st
ud

ie
s

C5
7B

L/
6J

 M
ic

e 
M

 P
up

: P
N

D 
5–

16
 

&
 5

–3
5.

 D
os

e:
 s.

c.
 1

.0
, 5

.0
 m

g/
kg

/d
ay

. V
eh

ic
le

 n
ot

 st
at

ed

F1
 M

 P
up

: P
N

D 
16

 o
r 

PN
D 

35
 P

re
w

ea
ni

ng
, 

ad
ol

es
ce

nt

Hi
pp

oc
am

pa
l c

el
l r

ea
rr

an
ge

d 
CB

1R
; c

ha
ng

es
 k

ey
 m

ol
ec

ul
ar

 c
on

st
itu

en
ts

 
of

 m
ito

ch
on

dr
ia

l r
es

pi
ra

to
ry

 c
ha

in
; T

hi
nn

in
g 

of
 p

yr
am

id
al

 c
el

l l
ay

er
; 

N
eu

ro
ch

em
ic

al
 d

ef
ic

its
 S

ig
ni

fic
an

ce
: D

ev
el

op
m

en
ta

l d
ef

ic
its

 fr
om

 n
eu

ro
na

l 
di

so
rg

an
iza

tio
n,

 m
isr

ou
te

d 
di

ffe
re

nt
ia

tio
n 

&
 a

ss
oc

ia
te

d 
pa

th
ol

og
ie

s.

1.
0

11
9

Ad
ol

es
ce

nt
 T

re
at

m
en

t

Lo
ng

-E
va

ns
 M

 P
N

D 
28

 e
ac

h 
3r

d 
da

y 
to

 P
N

D 
50

. D
os

e:
 i.

p.
 1

.5
 m

g/
kg

/
da

y.
 V

eh
ic

le
: s

al
in

e/
H 2O

/T
w

ee
n8

0

M
: P

N
D 

50
 o

r P
N

D 
63

, 
Ad

ol
es

ce
nt

, a
du

lt
Ad

ol
es

ce
nt

: D
isr

up
te

d 
de

ve
lo

pm
en

t o
f d

en
dr

iti
c 

ar
bo

rs
 P

FC
 

(p
yr

am
id

al
 n

eu
ro

ns
); 

Ad
ul

t: 
pr

ol
on

ge
d 

at
ro

ph
y 

in
 d

ist
al

 a
pi

ca
l a

rb
or

s 
of

 P
FC

 n
eu

ro
ns

; P
re

m
at

ur
el

y 
pr

un
ed

 d
en

dr
iti

c 
sp

in
es

 a
tt

en
ua

te
d 

ne
ur

op
la

st
ic

ity
. S

ig
ni

fic
an

ce
: D

isr
up

te
d 

PF
C 

ne
ur

al
 n

et
w

or
ks

 le
ad

 
to

 d
ec

re
as

ed
 c

og
ni

tiv
e 

&
 e

m
ot

io
na

l d
ys

re
gu

la
tio

n 
&

 a
ffe

ct
ed

 
de

ci
sio

n 
m

ak
in

g 
sim

ila
r t

o 
pa

th
ol

og
y 

in
 h

um
an

 sc
hi

zo
ph

re
ni

a

1.
5*

29

Lo
ng

-E
va

ns
 F

 P
N

D 
35

–7
5.

 D
os

e:
 

i.p
. 5

.6
 m

g/
kg

/d
ay

. V
eh

ic
le

: s
al

in
e

F:
 P

N
D 

75
–1

60
 &

 
15

9 
to

 2
00

 A
du

lt
Ad

ul
t: 

↑
CB

1R
 d

en
sit

y;
 P

er
sis

te
nt

 im
pa

irm
en

t o
f w

or
ki

ng
 m

em
or

y 
&

 ta
sk

 
pe

rf
or

m
an

ce
. S

ig
ni

fic
an

ce
: L

on
g 

te
rm

 e
ffe

ct
s o

n 
op

er
an

t l
ea

rn
in

g
5.

6
12

3

Lo
ng

-E
va

ns
 M

/F
 “

Pu
be

rt
y 

O
ns

et
” 

fo
r 1

4 
da

ys
. D

os
e:

 i.
p.

 5
 m

g/
kg

/d
ay

. 
Ve

hi
cl

e:
 E

tO
H/

Cr
em

op
ho

r/
sa

lin
e

M
/F

: D
ay

 1
4 

tr
ea

tm
en

t
M

/F
 c

om
bi

ne
d:

 ↓
To

ta
l a

tt
ac

ks
, t

ot
al

 p
in

s,
 p

er
ce

nt
 d

ef
en

se
 &

 c
om

pl
et

e 
ro

ta
tio

n.
5.

0 
(o

nl
y 

do
se

)
13

8

W
ist

ar
 M

 i.
p.

 1
.0

 m
g/

kg
/d

ay
 P

N
D 

28
–3

0 
→

5.
0 

m
g/

kg
/d

ay
 a

lte
rn

at
e 

da
ys

 P
N

D 
34

–5
2 

or
 P

N
D 

60
–6

2 
→

5.
0 

m
g/

kg
/d

ay
 a

lte
rn

at
e 

da
ys

 
PN

D 
66

-8
4 

or
 A

cu
te

: 5
 m

g/
kg

/d
ay

: 
PN

D 
52

. V
eh

ic
le

: T
w

ee
n8

0/
sa

lin
e

M
: P

N
D 

52
, 5

5,
 6

7,
 7

0,
 7

1,
 

72
, 8

4,
 8

7,
 9

9,
 1

02
, 1

03
, 

10
4,

 A
do

le
sc

en
t, 

ad
ul

t

Ad
ol

es
ce

nt
: ↑

La
te

nc
y 

to
 e

m
er

ge
; ↓

tim
e 

in
 o

pe
n 

ar
ea

s;
 ↓

re
ar

in
gs

; ↓
no

ve
l 

ob
je

ct
 p

re
fe

re
nc

e;
 ↑

m
em

or
y 

de
fic

its
; a

lte
ra

tio
ns

 in
 h

ip
po

ca
m

pa
l s

tr
uc

tu
re

/
fu

nc
tio

n 
re

m
ai

ni
ng

 to
 a

du
lth

oo
d.

 S
ig

ni
fic

an
ce

: H
ip

po
ca

m
pa

l a
lte

ra
tio

ns
 

le
ad

 to
 p

er
sis

te
nt

 m
em

or
y 

de
fic

its
 th

at
 d

ev
el

op
ed

 in
 a

do
le

sc
en

ce

1.
0

12
0

SD
 M

/F
 P

N
D 

35
–3

7;
 5

; 3
8–

41
; 

10
; 4

2–
45

. D
os

e:
 i.

p.
 2

.5
 m

g/
kg

/d
ay

, t
w

ic
e/

da
y.

 V
eh

ic
le

: 
Et

O
H/

cr
em

op
ho

r/
sa

lin
e

M
/F

: P
N

D 
75

: A
du

lt
Ad

ul
t: 

↓
 B

od
yw

ei
gh

t &
 fo

od
 in

ta
ke

; ↓
CB

1R
 b

in
di

ng
 &

 st
im

ul
at

io
n 

(N
Ac

, a
m

yg
da

la
, V

TA
, h

ip
po

ca
m

pu
s)

; ↓
su

cr
os

e 
pr

ef
er

en
ce

 (a
nh

ed
on

ia
); 

↓
CR

EB
 a

ct
iv

at
io

n 
in

 p
re

fr
on

ta
l c

or
te

x,
 N

Ac
, h

ip
po

ca
m

pu
s;

 ↑
 

dy
no

rp
hi

n 
(in

di
ca

te
s d

ep
re

ss
io

n)
. S

ig
ni

fic
an

ce
: D

isr
up

tio
n 

of
 n

eu
ra

l 
ci

rc
ui

tr
y 

re
la

te
d 

to
 e

m
ot

io
n 

an
d 

de
pr

es
sio

n 
du

rin
g 

ad
ol

es
ce

nc
e

5.
0

34

SD
 M

 P
N

D 
35

–3
7;

 5
; 3

8–
41

; 1
0;

 4
2–

45
. D

os
e:

 i.
p.

 2
.5

 m
g/

kg
/d

ay
, t

w
ic

e/
da

y.
 V

eh
ic

le
: E

tO
H/

cr
em

op
ho

r/
sa

lin
e

M
: P

N
D 

75
 A

du
lt

Ad
ul

t: 
↓

Ra
di

al
 m

az
e 

le
ar

ni
ng

; ↓
de

nd
rit

ic
 le

ng
th

 in
 h

ip
po

ca
m

pa
l d

en
ta

te
 

gy
ru

s;
 ↓

sp
in

e 
de

ns
ity

; ↓
N

M
DA

 re
ce

pt
or

s &
 b

io
m

ar
ke

rs
 in

di
ca

tin
g 

↓
ne

ur
op

la
st

ic
ity

. S
ig

ni
fic

an
ce

: S
pa

tia
l m

em
or

y 
&

 c
og

ni
tiv

e 
de

fic
its

5.
0

12
2

CD
1 

M
ic

e 
M

 P
N

D 
28

–4
8;

 6
9–

89
. 

Do
se

: i
.p

. 3
.0

 m
g/

kg
/d

ay
. V

eh
ic

le
 

Et
O

H/
ch

er
m

op
ho

r/
sa

lin
e

PN
D 

49
–5

3 
&

 P
N

D 
90

–9
4 

Ad
ol

es
ce

nt
. P

N
D 

90
–9

4 
&

 P
N

D 
13

1–
13

5 
Ad

ul
t

Ad
ol

es
ce

nt
: I

m
pa

ire
d 

ob
je

ct
 re

co
gn

iti
on

/w
or

ki
ng

 m
em

or
y 

(n
ov

el
 

ob
je

ct
 re

co
gn

iti
on

 &
 d

isc
rim

in
at

io
n)

; r
ep

et
iti

ve
/c

om
pu

lsi
ve

 b
eh

av
io

rs
 

(↑
pe

rc
en

t s
hr

ed
de

d 
in

 n
es

tle
t; 

↑
m

ar
bl

e 
bu

ry
in

g)
; ↓

de
la

ye
d 

an
xi

et
y 

to
 

m
ov

e 
ou

t o
f t

he
 d

ar
k;

 A
du

lt:
 ↓

no
ve

l o
bj

ec
t r

ec
og

ni
tio

n 
pe

rf
or

m
an

ce
; 

el
ev

at
ed

 p
lu

s m
az

e 
↓

 a
nx

ie
ty

 to
 v

en
tu

re
 o

ut
. S

ig
ni

fic
an

ce
: B

eh
av

io
rs

 
co

m
m

on
 to

 th
os

e 
se

en
 in

 a
ni

m
al

 sc
hi

zo
ph

re
ni

a 
m

od
el

s &
 h

um
an

s

3.
0*

12
1

Ad
ul

t t
re

at
m

en
t

Ta
bl

e 
2.

 (c
on

tin
ue

d)

(c
on

tin
ue

d)

https://doi.org/10.14218/JERP.2023.00017


DOI: 10.14218/JERP.2023.00017  |  Volume 8 Issue 4, December 2023306

Silva M.H.: Neurotoxic or protective cannabis componentsJ Explor Res Pharmacol

An
im

al
 st

ra
in

/S
ex

/D
ur

a-
tio

n/
Do

se
/V

eh
ic

le
Da

y 
te

st
ed

Ef
fe

ct
s

LO
EL

 (m
g/

kg
/d

ay
)

Re
fe

re
nc

e

Δ9
TH

C 
in

 a
ni

m
al

 st
ud

ie
s

Lo
ng

-E
va

ns
 M

. D
os

e:
 A

cu
te

 i.
p.

 
1.

0,
 1

.5
, 2

.0
 m

g/
kg

. V
eh

ic
le

: 
de

te
rg

en
t/

Et
O

H/
sa

lin
e

~1
5 

m
in

 ti
m

e 
in

cr
em

en
ts

 p
os

td
os

e
↓

At
te

nt
io

n;
 ↓

hi
pp

oc
am

pa
l f

un
ct

io
na

l c
el

l t
yp

es
. S

ig
ni

fic
an

ce
: I

nf
or

m
at

io
n 

no
t 

lik
el

y 
to

 b
e 

en
co

de
d 

co
rr

ec
tly

 &
 u

nl
ik

el
y 

to
 b

e 
ac

cu
ra

te
ly

 re
tr

ie
ve

d 
or

 re
ca

lle
d

0.
5

12
7

Lo
ng

-E
va

ns
 M

. D
os

e:
 A

cu
te

 i.
p.

 0
.0

1,
 

1.
0 

m
g/

kg
. V

eh
ic

le
: T

w
ee

n8
0/

sa
lin

e
30

 m
in

 p
os

td
os

e
↑

Tr
ia

ls 
to

 a
ch

ie
vi

ng
 re

ve
rs

al
 ta

sk
 b

et
w

ee
n 

st
im

ul
us

 &
 re

w
ar

d;
 a

ffe
ct

s c
-fo

s 
ex

pr
es

sio
n 

as
so

ci
at

ed
 w

ith
 n

eg
at

iv
e 

be
ha

vi
or

al
 e

ffe
ct

s (
or

bi
ta

l l
im

bi
c 

&
 st

ria
ta

l 
re

gi
on

s i
n 

br
ai

n)
. S

ig
ni

fic
an

ce
: E

ffe
ct

s i
n 

or
bi

to
fr

on
ta

l c
or

te
x 

&
 st

ria
tu

m
 

(p
ot

en
tia

l i
ne

la
st

ic
ity

) l
ea

di
ng

 to
 a

n 
in

ab
ili

ty
 to

 p
er

fo
rm

 re
ve

rs
al

 d
isc

rim
in

at
io

ns

1.
0

12
4

W
ist

ar
 M

: 5
 d

ay
s.

 D
os

e:
 i.

p.
 2

.0
, 4

.0
 

m
g/

kg
/d

ay
. V

eh
ic

le
: T

w
ee

n 
80

/s
al

in
e

30
 m

in
 p

os
td

os
e

↓
Sh

or
t-t

er
m

 m
em

or
y 

&
 d

isc
rim

in
at

io
n 

af
fe

ct
ed

 b
y 

eC
B 

in
cr

ea
se

 a
t t

he
 

CB
1R

. S
ig

ni
fic

an
ce

: D
isr

up
te

d 
CB

1R
s i

s d
et

rim
en

ta
l t

o 
m

em
or

y 
&

 c
og

ni
tio

n
2.

0
13

9

W
ist

ar
 M

: i
.p

. 7
 d

ay
s p

er
 d

os
e.

 
Do

se
: i

.p
. 1

.0
, 3

.0
, 1

0 
m

g/
kg

/d
ay

. 
Ve

hi
cl

e:
 E

tO
H/

Tw
ee

n 
80

/s
al

in
e

20
 m

in
 p

os
td

os
e

↓
 B

od
y 

w
ei

gh
t; 

An
xi

et
y 

m
ea

su
re

s:
 ↓

tim
e 

sp
en

t i
n 

em
er

ge
nc

e 
te

st
; ↑

 h
id

e 
tim

e;
 ↓

 o
pe

n 
fie

ld
 ti

m
e;

 ↓
pe

rc
en

t o
pe

n 
ar

m
 ti

m
e;

 ↓
ac

tiv
e 

tim
e;

 ↓
to

ta
l s

oc
ia

l 
in

te
ra

ct
io

n 
tim

e 
&

 d
ist

an
ce

 tr
av

el
ed

; P
la

ce
 c

on
di

tio
ni

ng
: ↓

pr
ef

er
en

ce
 fo

r t
he

 
co

nd
iti

on
ed

 si
de

; ↓
CB

1 
R 

bi
nd

in
g 

in
 h

ip
po

ca
m

pu
s,

 su
bs

ta
nt

ia
 n

ig
ra

, c
au

da
te

 
pu

ta
m

en
, c

ig
ul

at
e 

gy
ru

s.
 S

ig
ni

fic
an

ce
: A

ffe
ct

ed
 a

nx
ie

ty
, l

ea
rn

in
g,

 m
em

or
y 

&
 

so
ci

al
 in

te
ra

ct
io

n 
du

e 
to

 d
isr

up
tio

ns
 in

 C
B1

R 
bi

nd
in

g 
in

 c
rit

ic
al

 b
ra

in
 re

gi
on

s

1.
0,

 3
.0

, 
10

12
9

SD
 M

 2
 ti

m
es

/d
ay

 fo
r 1

4 
da

ys
. 

Do
se

: i
.p

. 5
.0

 m
g/

kg
 tw

ic
e 

pe
r 

da
y.

 V
eh

ic
le

: T
w

ee
n 

80
/s

al
in

e

Po
st

 te
rm

in
al

 d
os

e
↓

Pe
rf

or
m

an
ce

 a
tt

en
tio

n,
 e

xe
cu

tiv
e 

fu
nc

tio
ns

, m
em

or
y, 

co
gn

iti
on

 
as

so
ci

at
ed

 w
ith

 ↓
DA

 in
 P

FC
. S

ig
ni

fic
an

ce
: D

isr
up

tio
n 

of
 th

e 
co

rt
ic

al
 

do
pa

m
in

er
gi

c 
pa

th
w

ay
s l

ea
d 

to
 c

og
ni

tiv
e 

&
 a

tt
en

tio
n 

dy
sf

un
ct

io
n

20
14

0

SD
 M

: A
cu

te
 (1

 tr
ea

tm
en

t)
. 

Do
se

: i
.p

. 5
.0

 m
g/

kg
. V

eh
ic

le
: 

O
H-

β-
cy

cl
od

ex
tr

in
/s

al
in

e

30
 m

in
 p

os
td

os
e

↑
W

or
ki

ng
 m

em
or

y 
im

pa
irm

en
ts

; ↑
DA

 tu
rn

ov
er

 (D
O

PA
C/

DA
); 

↑
N

E 
tu

rn
ov

er
 P

FC
. S

ig
ni

fic
an

ce
: C

og
ni

tiv
e 

im
pa

irm
en

t
5.

0*
14

1

C5
7B

L/
6J

Ar
c 

m
ic

e 
M

: 1
 o

r 2
1 

da
ys

. A
cu

te
 &

 C
hr

on
ic

 D
os

es
: 

i.p
. 0

.3
, 1

.0
, 3

.0
, 1

0 
m

g/
kg

. 
Ve

hi
cl

e:
 E

tO
H/

Tw
ee

n 
80

/s
al

in
e

Ac
ut

e 
&

 c
hr

on
ic

 6
0 

m
in

 p
os

td
os

e
Ac

ut
e 

&
 c

hr
on

ic
: ↑

an
al

ge
sia

 &
 c

at
al

ep
sy

; ↓
 th

er
m

ic
 re

sp
on

se
 &

 lo
co

m
ot

or
 

ac
tiv

ity
; A

nx
ie

ty
: ↓

 d
ist

an
ce

 tr
av

el
ed

 li
gh

t/
da

rk
; ↓

 fr
eq

ue
nc

y 
of

 e
nt

rie
s 

in
 e

le
va

te
d 

+ 
m

az
e;

 ↓
 v

er
tic

al
 a

ct
iv

ity
, r

ea
rin

g 
&

 h
ea

d 
di

pp
in

g;
 ↓

st
ar

tle
 

re
sp

on
se

; ↓
pa

ss
iv

e 
av

oi
da

nc
e/

an
og

en
ita

l s
ni

ffi
ng

, s
oc

ia
l i

nt
er

ac
tio

n;
 

↑
la

te
nc

y 
pa

ss
iv

e 
av

oi
da

nc
e;

 ↑
pr

ep
ul

se
 in

hi
bi

tio
n.

 S
ig

ni
fic

an
ce

: E
ffe

ct
 

on
 n

eu
ro

to
xi

ci
ty

 (a
nx

ie
ty

) o
cc

ur
s a

fte
r b

ot
h 

ac
ut

e 
&

 c
hr

on
ic

 e
xp

os
ur

e

1.
0

12
6

CD
1 

m
ic

e 
M

. D
os

e:
 A

cu
te

 i.
p.

 
0.

2,
 0

.4
, 0

.8
, 1

.6
, 3

.2
, 6

.4
, 1

2,
 

48
 m

g/
kg

/d
ay

. V
eh

ic
le

: E
tO

H/
Cr

em
op

ho
rE

L/
sa

lin
e

30
 m

in
 p

os
td

os
e

↑
Pe

rc
en

t t
im

e 
in

 th
e 

op
en

 a
rm

 in
 th

e 
el

ev
at

ed
 p

lu
s m

az
e;

 ↓
an

xi
et

y;
 ↑

pe
rc

en
t 

sw
im

 ti
m

e;
 ↑

cl
os

ed
 a

rm
 e

nt
rie

s.
 S

ig
ni

fic
an

ce
: ↓

An
xi

et
y 

&
 d

ep
re

ss
io

n 
be

ha
vi

or
s

0.
8

12
5

AC
h,

 a
ce

ty
lc

ho
lin

e;
 2

-A
G,

 2
-a

ra
ch

id
on

oy
lg

ly
ce

ro
l; 

AM
PA

, α
-a

m
in

o-
3-

hy
dr

ox
y-

5-
m

et
hy

l-4
-is

ox
az

ol
ep

ro
pi

on
ic

 a
ci

d;
 C

B1
, c

an
na

bi
no

id
 1

 re
ce

pt
or

; C
Ha

T,
 c

ho
lin

e 
ac

et
yl

tr
an

sf
er

as
e;

 C
RE

B,
 c

yc
lic

 a
de

no
sin

e 
m

on
op

ho
sp

ha
te

 re
sp

on
se

 
el

em
en

t-b
in

di
ng

; D
A,

 d
op

am
in

e;
 D

AG
L,

 d
ia

cy
lg

ly
ce

ro
l l

ip
as

e;
 D

O
PA

C,
 L

-3
,4

-d
ih

yd
ro

xy
ph

en
yl

ac
et

ic
 a

ci
d;

 D
RD

, d
op

am
in

e 
re

ce
pt

or
; e

CB
, e

nd
oc

an
na

bi
no

id
; F

, f
em

al
e;

 G
AB

A,
 g

am
m

a-
am

in
o 

bu
ty

ric
 a

ci
d;

 G
D,

 g
es

ta
tio

n 
da

y;
 G

AD
67

, 
gl

ut
am

ic
 a

ci
d 

de
ca

rb
ox

yl
as

e 
67

; G
LU

T,
 g

lu
ta

m
at

e;
 H

3C
, h

em
ic

ho
lin

iu
m

-3
; i

.p
., 

in
tr

ap
er

ito
ne

al
; i

.v.
, i

nt
ra

ve
no

us
; L

O
EL

, l
ow

es
t-o

bs
er

ve
d-

ef
fe

ct
 le

ve
l; 

LT
D,

 lo
ng

-te
rm

 d
ep

re
ss

io
n;

 M
, m

al
e;

 M
AG

L,
 m

on
oa

cy
lg

ly
ce

ro
l l

ip
as

e;
 N

Ac
, n

u-
cl

eu
s a

cc
um

be
ns

; N
E,

 n
or

ep
in

ep
hr

in
e;

 P
EN

K,
 p

re
pr

oe
nk

ep
ha

lin
; P

FC
, p

re
fr

on
ta

l c
or

te
x;

 P
N

D,
 p

os
tn

at
al

 d
ay

; P
PI

, p
re

pu
lse

 in
te

rv
al

; s
.c

., 
su

bc
ut

an
eo

us
; S

D,
 S

pr
ag

ue
-D

aw
le

y;
 V

TA
, v

en
tr

al
 te

gm
en

ta
l a

re
a;

 ↓
, d

ec
re

as
e;

 ↑
, i

nc
re

as
e;

 
→

, l
ea

ds
 to

; *
, o

nl
y 

on
e 

do
se

 w
as

 u
se

d 
in

 th
e 

st
ud

y.

Ta
bl

e 
2.

 (c
on

tin
ue

d)

https://doi.org/10.14218/JERP.2023.00017


DOI: 10.14218/JERP.2023.00017  |  Volume 8 Issue 4, December 2023 307

Silva M.H.: Neurotoxic or protective cannabis components J Explor Res Pharmacol

amniotic fluid volume throughout pregnancy and decreased pla-
cental perfusion (oxygen availability decreases) accompanied by 
increased placental microinfarctions. In addition, there were sig-
nificant changes in the RNA signature sequences in the placental 
transcriptome. These data indicate that disruptions in vascular de-
velopment and angiogenesis affect the offspring through decreased 
testes weights and relative heart weights. Adult male rhesus ma-
caques were treated with Δ9THC in a cookie at 0.5 mg/7 kg/day 
(1–70 days), 1.0 mg/7 kg/day (71–140 days), and 2.5 mg/7 kg/day 
(141–210 days). At 210 days, there were dose-related decreases 
in testicular and epididymal weights.170 Follicle-stimulating hor-
mone, luteinizing hormone, and prolactin were increased, and total 
testosterone and estradiol were decreased. These effects indicate 
potential disruption of the hypothalamus–pituitary–gonadotropin 
axis, impacting testicular function.171 In another study, adult fe-
male rhesus macaques were treated with Δ9THC in a cookie at 0.5 
mg/7 kg/day (1–3 weeks), 1.0 mg/7 kg/day (4–6 weeks), 2.0 mg/7 
kg/day (7–9 weeks), and 2.5 mg/7 kg/day (10–12 weeks). At 12 
weeks, the animals showed increases in menstrual cycle length and 
increased follicle-stimulating hormone concentrations, another 
indication of hypothalamus–pituitary–gonadotropin axis disrup-
tion.171 The disruptions in hormonal balance, menstrual cycle, and 
ovulatory function would likely affect fecundity.172

Δ9THC-associated effects in humans
A review by Frau and Melis173 provides evidence showing that in 
utero, transplacental Δ9THC exposure deregulates the mesolim-
bic dopaminergic system in males, potentially predisposing them 
to schizophrenia. Prenatal exposure in humans can act to prime 
the sensorimotor gating development in the brain, primarily in 
the VTA region associated with the dopaminergic system. Subse-
quent environmental exposures such as Δ9THC or other stressors 
can lower the threshold to initiation of psychotic-like effects.134 
In addition, Δ9THC exposure to infants during breastfeeding can 
continue more than 6 weeks after the last maternal consumption, 
potentially affecting brain development.9,38,142,174 Monfort, Fer-
reira, Leclair, and Lodygensky22 have described the pharmacoki-
netics of cannabinoid exposures during pregnancy, in infants, 
and during breastfeeding. While consumption may be due to 
depression, anxiety, nausea, or pain, data indicate that there are 
significant irreversible risks to neuronal development in fetuses, 
neonates, and the developing young.22 Data also support the in-
creased risks of dysregulated glucose-insulin measurements as 
well as obesity in children after maternal use of cannabis during 
pregnancy.175

Although Δ9THC (cannabis) is not federally legal in the United 
States, acute and repeated human exposure to Δ9THC is regulated 
by the European Food Safety Authority.176 Human data were used 
by this agency to establish a lowest-observed-adverse-effect level 
(LOAEL) for an administered Δ9THC exposure of 2.5 mg/kg/day 
(corresponding to an internal dose of 0.036 mg/kg/day). Apply-
ing an uncertainty factor of 3 to extrapolate from a LOAEL to a 
no-observed-adverse-effect level (NOAEL) and 10 for intraspecies 
differences produced 1 µg/kg/day (acute reference dose: ARfD = 
[0.036 mg/kg/day ÷ 30] = 1 µg/kg/day). However, it is evident 
from gestational treatment in Table 2 that offspring experienced 
neurodevelopmental effects related to motivation/reward, stress 
response, and increased sensitivity to opiate reward in adulthood 
at 0.15 mg/kg/day.112,114 Establishing an ARfD would require the 
same uncertainty factors in addition to an interspecies default of 10 
([LOAEL 0.15 mg/kg/day ÷ 3 = NOAEL 0.05 mg/kg/day] ÷ [10 

interspecies × 10 intraspecies]) = 0.5 µg/kg/day.177–179 Gestational 
exposure to Δ9THC may need a different ARfD than that of adults, 
since effects occur at very low doses. This is especially critical 
to re-evaluate because the low-dose animal studies used only one 
dose, and there were no doses below 0.15 mg/kg/day in which ef-
fects might also be seen in developing fetuses.

CBD-associated mechanisms
While it can make up as much as 40% of cannabis extract,180 CBD 
has been purified in products for use by people and even their pets. 
CBD is one of the most actively studied therapies for a broad spec-
trum of neurological, inflammatory, and mental diseases because 
of its efficacy, low toxicity, and availability (e.g., over the counter 
and online order). The exact mechanism for the therapeutic effects 
is still under investigation,42,181 but the proposed MOA for CBD 
indicates several targets associated with neuroprotection (Fig. 2182 
and Table 3).86,183,184 Like Δ9THC, CBD has effects on many inter-
acting targets, and there is evidence for direct and indirect CBD 
actions on inflammatory and neurological parameters.180

Glial cells
CNS connective tissue (e.g., macroglia: astrocytes and microglia) 
consists of nonneuronal cells that link neuronal cells to the blood 
supply (blood–brain barrier), regulate blood flow to the brain, and 
regulate neurotransmission (macroglia) or serve as macrophages 
to mount immune responses in the brain (microglia).185 When neu-
ronal injury occurs, astrocytes can signal microglia to initiate an 
immune response; however, when the immune response becomes 
unbalanced, neuronal injury will occur.181 CBD can decrease the 
microglial immune response to injured dopaminergic neurons in 
diseases like Parkinson’s disease, and it increases the recruitment 
of astrocytes to promote neuronal regeneration through brain-de-
rived neurotrophic factor (BDNF) (Table 3).

Adenosine receptor 2A (A2AR)
Adenosine acts at a G protein-coupled receptor (A2AR) on neu-
ronal membranes to suppress immune responses due to inflamma-
tion or cell stress. CBD serves as an agonist to decrease adenosine 
reuptake, thereby increasing adenosine signaling and decreasing 
neuroinflammation.186,187 CBD exposure decreases proinflamma-
tory cytokine interleukin (IL)1β, microglial activity, tumor necro-
sis factor-alpha (TNFα), cyclooxygenase-2 (COX2), and inducible 
nitric oxide synthase (iNOS) activity in the brain (Table 3). These 
pathways have been shown to improve the effects of multiple scle-
rosis, hypoxic-ischemic brain damage, Alzheimer’s disease, and 
hepatic encephalopathy.183

5-HT receptors
The dorsal raphe nucleus (DRN) is the primary serotonergic 
center (5-HT) in the brain where GCPR 5-HT1A receptors are ex-
pressed. Receptor stimulation inhibits voltage-gated Ca2+ chan-
nels, activates K+ channels, and inhibits neurotransmission in the 
DRN.44,188 CBD has an anxiolytic effect by acting through 5-HT1A 
receptor in male Wistar rats, previously stressed by foot shocks or 
restraint, but it can also induce anxiogenic behaviors in rats expe-
riencing contextual fear conditioning,182–190 perhaps by serving as 
an agonist at the 5-HT1A receptor.188 Acting on the serotonergic 
system, CBD is associated with improved locomotor activity (after 
striatal damage), cognition, cerebral ischemia, seizure disorders, 
and hepatic encephalopathy (Table 3).183 Through the 5-HT1A re-
ceptor, CBD is associated with antiepileptic, anticataleptic, neu-
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roprotective, antiemetic, anxiolytic, antidepressant, antipsychotic, 
and analgesic effects.86,191–195 Others have also indicated that CBD 
acts via a negative allosteric mechanism in DRN somatodendritic  
5-HT1A receptors that does not require CB1, 5-HT2A, or GABAA 
receptors.86,186

CB1Rs and CB2Rs
CBD at the CB1Rs regulate excitotoxicity by inhibiting glutamate 
release to the NMDA receptors and normalizing glutamatergic activ-
ity. CBD acts to increase the blood supply to areas after ischemic in-
cidents by decreasing endothelial-derived endothelin-1 or nitric ox-
ide to increase vasoconstriction.197 Neurodegeneration occurs with 
activation of microglial cells (immune cells in the brain); however, 
CB1R activation by CBD leads to a decrease of TNFα and IL12 and 
an increase of IL10. Activation of CB2 then decreases the prolif-
eration and migration of microglial cells while decreasing TNFα by 
inhibiting nuclear factor kappa-light-chain-enhancer of activated B 
cells (NFкB; Table 3).198,199 The anti-inflammatory action of CBD 
has been shown to improve neuronal damage from ischemic stroke, 
Tardive dyskinesia, and Parkinson’s disease.

FAAH
CBD can act indirectly at the CB1R through inhibition of FAAH 
and the AEA transporter, leading to increased AEA and activation 
of CB1R.200,201 Increased CB1R agonism leads to decreased eCB 
degradation and transport (Table 3).

TRPV1
TRPV consists of a vanilloid channel on the plasma membrane, 
considered by some to be a CB3R,51 that induces neuropeptide 
release associated with pain perception, neuroinflammation, and 
body temperature regulation.200 CBD at TRPV-1 channels leads to 
increased Ca2+ levels, resulting in desensitization and subsequent 
decreased pain. TRPV1 binding decreases microglial activation 
and migration as well as oxidative stress (Table 3). In addition, 
CBD can increase AEA levels by inhibition of FAAH.202 However, 
AEA and CBD are both TRPV1 channel agonists. TRPV1 channel 
activation by CBD presynaptically increases glutamate release in 
the brain, which may serve to counteract/antagonize the inhibitory 
action of CB1R binding by CBD on colocalized glutamatergic neu-
rons. TRPV1 activation by CBD agonism can increase the PI3K/
Akt pathway signaling to decrease the incidence of hallmarks of 
Alzheimer’s disease.

G-coupled protein receptor 55 (GPR55)
GPR55 binding protects against excitotoxicity potentially through 
GABAA receptor. CBD, as an antagonist, decreases GPR55 activa-
tion in the CNS to regulate such processes as neuropathic pain and 
antiepileptic activity.203 CBD has a high affinity for GPR55, resulting 
in a decreased glutamate release in the hippocampus, thus causing 
anti-convulsive effects, also seen in human subjects.180 Moreover, 
the use of CBD has been shown to result in improved Parkinson’s 
disease and Dravet syndrome (DS) symptoms (Table 3).183,204

Fig. 2. The cannabidiol (CBD) mechanism of action includes: (1) agonistic activity toward the transient receptor potential vanilloid type 1 (TRPV1), the 
peroxisome proliferator activated receptor ɣ (PPARɣ), and the serotonin1A (5-HT1A) receptor; (2) antagonist activity at the G-protein coupled receptor 
GPR55; (3) antagonist to CB1 and CB2Rs in addition to acting as a reverse agonist and negative allosteric modulator; (4) antagonist of FAAH leading to 
increased anandamide (AEA), which goes on to activate the CB1, CB2, and TRPV1 receptors.; (5) direct action on the GABAA receptor (also influenced 
by AEA), leading to neuroprotection; (6) increased mitochondrial activity leading to antioxidant and anti-inflammatory action. Overall CBD has anti-
depressant, anti-anxiety, and anti-inflammatory effects. Figure adapted with permission: Copyright © 2018.182 FAAH, fatty acid amide hydrolase; GABA, 
gamma-aminobutyric acid; GPR55, G protein-coupled receptor 55; ROS, reactive oxygen species.
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Peroxisome proliferator-activated receptor gamma (PPARɣ) 
receptors
CBD is an agonist of PPARɣ, a nuclear receptor and ligand-induc-
ible transcription factor that produces anti-inflammatory and anti-
oxidative effects.199 PPARɣ modulates inflammation by inducing 
ubiquitin-proteasomal degradation of p65, resulting in inhibition 
of proinflammatory gene expression of cyclooxygenase (COX2) 
and proinflammatory mediators (e.g., TNFα, IL1β, and IL6) in 
addition to inhibition of NFкB-mediated inflammatory signaling. 
CBD agonist activity with PPARɣ also contributes to the inhibi-
tion of TNFα, IL1β, and IL6 transcription to prevent NFкB signal-
ing, and it also produces antioxidant properties.198,199 It increases 
eCBs by antagonist activity at CB2Rs, and the eCBs then act as 
PPARɣ agonists to promote anti-inflammatory and antioxidant ac-
tions. Furthermore, Alzheimer’s disease has been demonstrated to 
be improved via the PPARɣ-mediated protective effects of CBD 
(Table 3).

GABAA receptors
As the main inhibitory neurotransmitter in the CNS, GABA disrup-
tion is associated with neurological diseases, including cognitive 
deficits, drug addiction, chronic stress and anxiety, epileptic disor-
ders, and Huntington’s disease.180,205 CBD stimulates GABAergic 
neurotransmission, meaning that the inhibitory neurotransmission 
and frequency are increased.206 Seizure frequency, duration, and 
severity were reduced in addition to increased social behaviors in a 
mouse model of DS and other diseases after CBD treatment. In ad-
dition, overexcitation in the dentate gyrus of the hippocampus was 
decreased through CBD effects on GABAA receptors.206 There-
fore, with CBD bound to the GABAA receptor, anticonvulsant and 
anxiolytic actions are seen in the CNS. Moreover, since CBD does 
not bind competitively with the benzodiazepine receptor, it is po-
tentially useful in patients resistant to benzodiazepines, which is 
the standard antiseizure treatment (Table 3).207

CBD-associated neuroprotection in animal studies
CBD has shown neuroprotective effects in animal models with 
several neural-associated disease states (Table 3).86,181,183,208 The 
areas studied have focused mainly on neuroprotection and treat-
ment of brain-related diseases (e.g., multiple sclerosis, Alzhei-
mer’s disease, and schizophrenia), rather than effects on other are-
as of the body (e.g., local pain). CBD at doses from 5.0 mg/kg/day 
in rodents has many beneficial effects (Table 3). Note that doses 
administered in vivo were by i.p.; therefore, CBD is more slowly 
absorbed and subject to local metabolic processes prior to entering 
the blood stream, as would occur with oral exposure.107,111 Table 3 
indicates pathways specifically shown to be associated with CBD 
exposure.

CBD neuroprotection in human studies
The neuroprotective effects of CBD observed in animal studies are 
supported by observations in human subjects. CBD is well toler-
ated in children and adults and has a broad spectrum of therapeutic 
benefits to help with significant neurological disease states,209 in-
cluding neurological damage and disorders, brain tumors, Parkin-
son’s disease, Huntington’s disease, Alzheimer’s disease, multiple 
sclerosis, neuropathic pain, and childhood seizures (e.g., Lennox-
Gastaut syndrome and DS).180,210 Additionally, synthetic forms of 
CBD have been used to treat drug-resistant epilepsies in children M
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(age ≥2 and older) (Lennox-Gastaut syndrome or DS).210 Epidi-
olex/Epidyolex (>99% CBD) is approved by the United States 
Food and Drug Administration and the European Medicines Agen-
cy to treat these diseases.211 The benefits of CBD also have been 
shown in human subjects to treat anxiety, depression, post-trau-
matic stress disorder, and obsessive-compulsive disorders;212,213 
furthermore, it has demonstrated antipsychotic properties in those 
with schizophrenia.214 A few examples of CBD affecting neuro-
logical diseases are listed in Table 4 (review).42

Parkinson’s disease
The hallmark of Parkinson’s disease is the accumulation of 
α-synuclein and the degeneration of dopaminergic neurons in the 
SNa in addition to motor alterations (bradykinesia, resting tremors, 
rigidity, and postural instability), depression, and dementia (re-
view).42 Improvement in the disease by CBD occurs via numerous 
pathways acting through the eCBS (e.g., CB1Rs, CB2Rs, FAAH, 
and MAGL) to modulate excitotoxicity, dopaminergic neuronal 
degeneration through inflammation, and microglial inhibition (Ta-
ble 4).43,202,215–217 Importantly, CBD has been used to improve the 
effects of Parkinson’s disease in human subjects (review).218

Huntington’s disease
Huntington’s disease is an autosomal-dominant neurodegenera-
tive disease that is progressive, leading to degeneration of striatal 

GABA and dopaminergic neuronal destruction in the globus pal-
lidus.43 CB1R activation by CBD in the striatum can inhibit gluta-
matergic transmission to protect damaged neurons and serve as an 
antioxidant (Table 4).43,217,219,220

Alzheimer’s disease
CBD has been shown to decrease or block hyperphosphorylation 
of tau protein, acetylcholinesterase activity, oxidative stress, apop-
tosis, neuroinflammation, gliosis, and deposition and expression of 
beta-amyloid (βA).210 The mechanism is associated with selective 
activation of PPARɣ, resulting in increased clearance of βA peptides 
through autophagy in the hippocampus, ubiquitination of amyloid 
precursor proteins, and decreased βA deposition (Table 4).43,210

CBD-associated toxicity
Since it is not considered to be intoxicating, compared to Δ9THC, 
CBD has been widely used for medicinal purposes and is of great 
interest to medical communities.17 While CBD use has increased 
in humans for a plethora of conditions, little is known about the 
potential for risks from consumption during pregnancy or in chil-
dren using CBD to treat epilepsy.17,221 The effects of CBD on brain 
development in utero are not well understood; however, C57BL6/J 
dams treated with 3.0 mg/kg s.c. GD 5-18 had pups with sex-spe-
cific behavioral effects (Table 5).15–17,23,24,183,222,223,228, The male 

Table 4.  Neuroprotection for Parkinson’s disease initiated with cannabidiol treatment

CBD target Biological effect

CBD neuroprotection in Parkinson’s disease (review)42

CB1 activation ↓Microglial activation and microglial NADPH oxidase expression; ↓Production of proinflammatory agents (IL1β, 
TNFα, iNOs, COX2); ↓Dopaminergic neuronal damage; ↓Excitotoxicity (↓glutamate release); ↓ROS and lipid 
peroxidation

CB1 antagonism ↑Astrocyte activation in substantia nigra pars compacta

CB2 activation ↓Microglia number and production of proinflammatory agents (IL1β, TNFα, iNOs, nitric oxide); ↓Dopamine 
depletion; ↓Myeloperoxidase-positive astrocytes; ↑Antioxidant enzyme activity and antioxidant agents

MAGL inhibition ↓Microglia and astrocyte number; ↑CB2 activation; ↑GDNF

FAAH inhibition ↑Motor activity; prevents excitotoxicity by inhibiting glutamate release due to neuroinflammation; ↓Protein  
carbonylation; ↓ROS and lipid peroxidation

PPARɣ activation ↓ROS

CBD neuroprotection in Huntington’s disease (review)42

CB1 activation ↓Excitotoxicity (↓glutamate release)

CB2 activation ↓Reactive microglial cell number; ↓Production of proinflammatory agents (TNFα); ↓ROS and nitric oxide;  
↑Production of neurotrophins & anti-inflammatory mediators (IL10, IL1 antagonist)

Phytocannabinoid 
structure

↓ROS (phenolic structure acts as an ROS scavenger)

PPARɣ activation Interference with the NFκB signaling pathway; Induction of antioxidant enzymes

CBD neuroprotection in Alzheimer’s disease (review)42

PPARɣ activation ↓Apoptosis during neurodegeneration; ↓Astrocyte activation; ↓Expression of proinflammatory cytokine IL1β and 
iNOS (↓neuroinflammation); ↓Amyloid plaque and inflammation

CB1 activation ↓Amyloid β-induced memory impairment

CB2 activation ↓Proinflammatory mediators from microglial cells and astrocytes; ↓Neuroinflammation

CB1, cannabinoid receptor 1; CB2, cannabinoid receptor 2; COX2, cyclooxygenase 2; FAAH, fatty acid amide hydrolase; GDNF, glial cell-derived neurotrophic factor; IL, interleukin; 
iNOS, inducible nitric oxide synthase; MAGL, monoacylglycerol lipase; PPAR, peroxisome proliferator-activated receptor; ROS, reactive oxygen species; TGF, transforming growth 
factor; TNF, tumor necrosis factor.
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pups showed higher body weights, and there were effects on ultra-
sonic vocalizations (both sexes), homing behavior, and decreased 
motor and discriminatory abilities (females). These findings indi-
cate that CBD has effects on psychopathology after in-utero expo-
sure at 3.0 mg/kg/day and may not be as safe as previously consid-
ered when consumed during pregnancy.

In adults, aspects of CBD neurotoxicity are related to sex and 
strain in rodent studies.208 For example, male and female Swiss 
and C57BL/6 mice were treated with a single dose of CBD at 0 
(saline/Tween 80), 10, and 20 mg/kg/day, and Flanders-sensitive 
line rats and Flanders- resistant line rats were treated with CBD 
at 0, 10, 30, and 60 mg/kg/day i.p. The mice were tested in the 
elevated plus maze, which measures anxiety behavior, and in the 
tail suspension test, which measures immobility and antidepres-
sant behavior) 30 min after treatment. There were no effects from 
treatment with either strain of females in the tests, but male Swiss 
mice showed increased immobility in the tail suspension test at all 
doses (antidepressant). In the elevated plus maze test, the female 
Swiss mice showed decreased entries into the enclosed arm, indi-
cating decreased exploratory behavior (antidepressant-like effect). 
Meanwhile, male and female C57BL/6 mice did not show effects 
in the elevated plus maze test. Rats were also tested 50 min after 
treatment in the forced swim and open field tests. The Flanders-
sensitive line rats showed decreases at all doses in the forced swim 
test (measure of immobility), with no effects on distance traveled 
in the open field test and no effects in these tests with Flanders-
resistant line rats. When the interval between treatment and testing 
was increased to 2 h, there was a slight increase in immobility in 
the Flanders-sensitive line rats at 30 mg/kg CBD. Therefore, it is 
significant to note that the exposure time, sex, strain, and species 
differences with CBD treatment were related to anxiety/depressive 
behaviors. The doses used in this study and those shown in Table 
5 are within the range of those showing neuroprotection in Table 
3, also administered i.p. In-vitro studies with mouse embryos also 
support the toxic effects of CBD during development.16

Animal studies have shown that doses of CBD that are neu-
roprotective (Table 3), can be toxic to the male reproductive 
tract.14,15,223–225 CBD treatment at 15 mg/kg/day (gavage) for three 
sperm development cycles in mice can lead to disrupted sperm 
development, abnormal seminiferous epithelium, decreased tes-
tes weights, and other effects that would impact fertility.14 Studies 
also have demonstrated reduced testosterone, inhibition of sperm 
maturation, and thinning, atrophied cells, pyknosis in seminiferous 
tubules, and other pathologies.14 The presumptive MOA involves 
CBD inhibition of 17α-hydroxylase in Leydig cells, leading to de-
creased testosterone production. However, in humans, the effects 
on sperm and other reproductive parameters in males have been 
mainly attributed to the Δ9THC content in cannabis, rather than 
CBD.226,227 But based on animal studies, CBD in cannabis could 
contribute to the negative effects in males; hence, this area needs 
more research. In-vitro studies performed on human and mouse 
Sertoli cells obtained postnatally support the toxic effects of CBD 
observed in animal studies.18 Dose exposure, route, species, sex, 
frequency of consumption, and susceptibility to the effects from 
exposure contribute to health outcomes.

Future directions
With increasing use of cannabis with higher concentrations of 
Δ9THC, there are concomitant risks to safety in the general popula-
tion from intoxication while driving or in the workplace. Methods 
have been developed to measure impairment from cannabis in a 

timely manner on site (e.g., in a car or workplace) through brain 
imaging to provide assessments of intoxication.39 Functional near-
infrared spectroscopy provides a measurable signature of neural 
impairment of the PFC, and the results are supported by blood 
and urine assessments to indicate whether participants were ex-
posed but not impaired or exposed and impaired. Such measures 
acknowledge the growing need for detection and mitigating safety 
measures due to cognitive impairment from cannabis use.

Neurotoxicity of CBD is also in need of more study. For exam-
ple, CBD injured neonatal rat cortical neurons and astrocytes in 
vitro at low therapeutic levels that could affect patients treated with 
CBD.17,221 CBD is known to be neuroprotective in Parkinson’s 
disease, where dopaminergic neurons of the substantia nigra pars 
compacta are shown to degenerate.78,194,229 Conversely, in animal 
models, dopaminergic pathways are attenuated by CBD, resulting 
in decreased motor functions.24 While data indicate that for some, 
the benefits of CBD may outweigh the risks, it is clearly necessary 
to continue researching optimal treatment levels related to disease 
improvement. Persons exposed to higher doses of CBD for severe 
illnesses, such as DS to control seizures (Epidiolex®, Epidyolex® 
in Europe), may need to weigh the risk versus benefit and exert 
caution for use in pregnant women and children.

Finally, one of the biggest challenges in characterizing the ef-
fects of cannabis during developmental life stages is knowing the 
exposure and individual health risk factors. In laboratory experi-
ments, the exact dose, purity of cannabinoids, animal strain/sex/
pregnancy status, duration of exposure, and other parameters are 
controlled; however, with human subjects, it is difficult to charac-
terize exposure. Nevertheless, knowledge of the dose and product 
components being consumed as well as the life stage of exposure, 
route of exposure (i.e., inhalation, s.c., i.v., oral, or i.p.), body fat 
composition, age, health status, frequency of use, and other fac-
tors will determine the absorption, distribution, and metabolism 
of cannabinoids entering the blood stream.107,111 Many of these 
parameters are not consistent among studies performed in animals 
(e.g., different animal species/strains, dosing regimens, vehicles), 
and data may be difficult to obtain in epidemiological studies with 
human subjects. Thus, there is a need for further study to protect 
fetuses, infants, and children from harmful exposures during de-
velopment. There is also a need for further research related to risks 
for male reproductive toxicity.

Conclusions
This review focused on neurotoxicity and neuroprotection of the 
most thoroughly characterized phytocannabinoids in cannabis—
Δ9THC and CBD. Most cannabis exposure is not a pure form of 
either compound, but it contains a combination of those and over 
100 others. Due to the increasing use of cannabis or CBD, not just 
recreationally, but for the treatment of diseases (e.g., depression, 
anxiety, inflammation, pain, and seizures) and a plethora of other 
conditions, it is critical for the industry to thoroughly characterize 
expected exposures. The extent of the risk versus beneficial effects 
of compounds in cannabis is dependent on many factors, but, as in-
dicated by studies with Δ9THC, there is a high risk for long-lasting 
neurodevelopmental effects from exposure to fetuses, infants, chil-
dren, and adolescents, including severe mental dysfunction (e.g., 
depression, anxiety, and schizophrenia), decreased cognition, drug 
dependency tendencies, and decreased motor function. Adoles-
cent use can present unique challenges because adolescence is a 
developmental stage of increased independence and potential for 
experimentation with cannabis. In addition, brain development as 
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well as major dynamic changes in the eCBS continue for the first 
25, or more, years of life; hence, cannabis exposure during adoles-
cence can still attenuate brain development. Adolescent exposure 
has been shown to lead to persistent adverse neurodevelopmental 
changes, increasing the risks for major depressive disorder, drug 
addiction, and severe psychotic disorders.

On the other hand, CBD is nonpsychotropic and has positive 
therapeutic applications to treat childhood epilepsy, multiple scle-
rosis, stroke, Alzheimer’s disease, Parkinson’s disease, and other 
severe disorders. The focus has been mainly on the health benefits; 
however, the reported developmental effects from exposure in 
utero, effects on male reproduction, and associations with human 
genotoxicity have not been well studied, and a significant data gap 
remains.
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Review Article

Introduction
Ustekinumab (CNTO-1275, Stelara) is a unique fully humanized 
monoclonal antibody (mAb) that interacts with the p40 chain 
shared by interleukin (IL)12/23 and functionally attenuates Type 
1 T helper (Th1) and Type 17 (Th17) responses.1 Ustekinumab 
was approved for treatment of adult patients with moderate to se-
vere psoriasis by both the European Medicine Agency (EMA) and 
the U.S. Food and Drug Administration (FDA) in January 2009 
and September 2009, respectively. Subsequently, the FDA has ex-
panded the approval for treatment of adolescents and children (≥6 

years old) (Fig. 1). Although it was first approved for treatment 
of patients with psoriasis,2–5 ustekinumab has proven effective for 
treatment of other immune-mediated disorders (IMD), including 
active psoriatic arthritis (PsA) and active forms of major inflam-
matory bowel diseases, such as ulcerative colitis and Crohn’s dis-
ease. Aside from these labeled indications, ustekinumab has been 
used “off-label” for other inflammatory diseases.6 However, while 
multiple publications, mainly case reports and a small number of 
case series, have shown excellent results of ustekinumab when 
prescribed off-label for treatment of various skin conditions, there 
is a lack of systemic reviews in the literature. Hence, in this review 
we discuss ustekinumab’s pharmacological effects, efficacy, and 
safety in the treatment of psoriasis. More importantly, this review 
offers a special emphasis on the potential applications of usteki-
numab in dermatology, based on its specific mechanism of action 
to inactivate both IL-12 and IL-23, and extend its therapeutic ap-
plications to a variety of skin disorders.

Pharmacological mechanisms of ustekinumab
Successful mAb therapy began with the generation of chimeric, 
humanized, and, most recently fully human mAbs. Most mAbs that 
have been approved and are in the pipeline are indicated for the 
treatment of cancer, but there have also been other breakthroughs 
in the field of IMD.1 Presently, one of the largest classes of mAb 
therapy includes mAbs that bind and neutralize tumor necrosis 
factor α (TNFα), a potent inflammatory mediator associated with 
various IMD, such as rheumatologic, dermatologic, and gastroen-
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terological diseases.7 IL-12 and IL-23 are significant contributors 
to the pathogenesis of IMD.8 IL-12 is a pro-inflammatory cytokine 
that consists of two different chain units designated by their average 
molecular weight as p40 and p35. The binding of IL-12 to its spe-
cific receptor (IL12Rβ1/IL12Rβ2), which is usually upregulated on 
pro-inflammatory T cells, stimulates tyrosine kinase 2 (TYK2) and 
Janus kinase 2 (JAK2) to activate signal transduction activation of 
transcription (STAT) 4. Once phosphorylated, STAT4 translocates 
to the nucleus where it modulates transcription of numerous genes, 
primarily interferon (IFN)-γ.9 Thus, IL-12 promotes the differentia-
tion of activated CD4+ T cells into Th1 cells, a subset of CD4+ T 
cells involved in the pathogenesis of several IMD.10 IL-23 is also a 
heterodimeric cytokine formed by two chains of p19 and p40 (simi-
lar to IL-12). Engagement of IL-23 receptors (IL12Rβ1/IL23R) by 
IL-23 can activate STAT3 to induce IL-17, IL-22, and other cytokine 
production, leading to Th17 responses that contribute to the patho-
genesis of various IMD and tissue damage.1

Within the skin, IL-17 can promote keratinocyte proliferation 
and the production of different chemoattractant molecules, such as 
CXCL1, CXCL8, and CCL20.11–13 According to animal and hu-
man studies, there is a strong link between Th1/Th17 signaling 
dysregulation and certain IMD, like psoriasis, PsA, rheumatoid 
arthritis, and inflammatory bowel disease. Furthermore, genome-
wide association studies (GWAS) have identified a strong asso-
ciation between genetic alterations that affect the Th1/Th17 axis 
and chronic inflammation.14 Thus, in genetically susceptible indi-
viduals, over-activated IL-12 and IL-23 trigger aberrant Th1/Th17 
responses, subsequently leading to IMD. Ustekinumab is a unique 
fully human IgG1 kappa mAb against that interacts with the p40 
chain of IL-12 and IL-23 and blocks the binding of these two cy-
tokines to their common receptor, IL12Rβ1. Importantly, usteki-
numab preferably binds to soluble but not membrane-associated 
IL-12/IL-23 and does not usually induce complement activation or 
cell lysis through its immunoglobulin Fc domain.1

Figure 2 is an illustration of the mechanisms underlying the ac-
tion of the drug in inflammatory skin diseases.

Ustekinumab current approved indications in dermatology
Plaque psoriasis is the only validated indication for ustekinumab in 
dermatology. Psoriasis is a frequent, chronic skin IMD marked by 
sharply well-circumscribed erythematous-squamous lesions and is 
significantly associated with systemic comorbidities.15 The World 
Health Organization defines psoriasis as a serious, chronic, disfig-
uring, disabling, and non-communicable disease. Psoriasis affects 
approximately 2% to 3% of people worldwide, and 30% of cases are 
moderate to severe forms.16 Psoriasis and its related comorbidities 
may substantially lower a patient’s quality of life (QoL) and lead 
to a high degree of cumulative life course impairment.17 Clinically, 
psoriasis can manifest with a multitude of phenotypes; 90% of cases 
display chronic plaque psoriasis (also named psoriasis vulgaris).18 
Therefore, all currently available treatments are approved for psoria-
sis vulgaris. Psoriasis can also exhibit other less common variants, 
including guttate, erythrodermic, and pustular psoriasis. Currently, 
the management of these variants relies on empiric therapies.16

During the past twenty years, the understanding of psoriasis 
pathogenesis has progressed considerably. The TNFα-IL23-Th17 
axis has been recognized as a major inflammatory pathway for 
the pathogenesis of plaque-type psoriasis,19 which is supported by 
immunological and genetic studies. While GWAS have shown a 
link between psoriasis pathogenesis and genetic alterations in the 
IL-23/IL-17 axis,20 immunological researchers have stressed the 
important roles of IL-23 in the development and progression of 
psoriasis by enhancing Th17 responses. IL-17 is a key orchestra-
tor of chronic inflammation in psoriasis. IL-17 induces the secre-
tion of many other cytokines and chemokines, which promote the 
chemotaxis of immune cells to the site of inflammation and sustain 
the positive inflammatory loop and epidermal hyperplasia.21

Fig. 1. Timeline of the development and approval of ustekinumab for psoriasis. FDA, Food and Drug Administration; IL, Interleukin; Th, T-helper.
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However, until late last century, topical therapies and/or ultravi-
olet light therapies were the mainstay of psoriasis treatment. Sub-
sequently, the first major therapeutic advancements have been con-
ventional systemic drugs (methotrexate, cyclosporine, fumarates, 
and acitretin). Besides these older agents, the novel small molecule 
apremilast has recently expanded into the psoriasis armamentari-
um.22 Although these treatments may benefit some patients, they 
have lower therapeutic efficacy and higher adverse events (AEs) 
owing to a non-specific modulation of the immune system. For 
example, the PASI 75 (a decrease in PASI score by 75%, the cur-
rent benchmark of psoriasis treatment) of methotrexate is typically 
35.5–41%.22 The need for alternative and/or small molecule thera-
peutics and a better understanding of the immunopathogenesis of 
psoriasis have prompted the discovery of biological drugs directed 
against the aberrant immune response. Three main groups of bi-
ological agents, including blockers for TNFα, IL-23, and IL-17, 
have been approved for the treatment of psoriasis.

Ustekinumab is the first approved biological drug for treat-
ment of chronic plaque psoriasis, based on its anti-IL-23 effect.23 

Ustekinumab, manufactured by Johnson & Johnson Pharmaceuti-
cal, is created by immunizing human mAb-producing mice with 
recombinant human IL-12. Currently, this biological drug is ap-
proved by the FDA for treatment of patients aged ≥6 years who 
have moderate to severe psoriasis and who are eligible for sys-
temic treatment or phototherapy.23 The efficacy-safety profiles of 
ustekinumab have been demonstrated through four large phase III 
studies: three placebo-controlled trials namely PHOENIX 1/2 and 
PEARL, and one active comparator-controlled trial (ACCEPT).2–5 
The results from these trials indicate that ustekinumab has a more 
favorable efficacy-safety profile compared to anti-TNFα drugs. A 
total of 2,000 psoriatic patients with moderate to severe disease 
participated in the PHOENIX 1/2 trials. After the initial induction 
doses of the drug administered subcutaneously every 4 weeks, fol-
lowed by a maintenance dosage every 12 weeks, 66.4% to 75.7% 
of participants achieved PASI 75, which was significantly greater 
than in the placebo groups (3–4%). Moreover, while the improve-
ment was maintained during the 3-month interval between doses, 
the incidence of AEs (52% and 49%, respectively) and serious AEs 

Fig. 2. The mechanisms of actions of ustekinumab in inflammatory skin diseases. IFN: Interferon; IL: Interleukin; Th: T-helper; TNF: Tumor necrosis factor.
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(1.4% and 1.5%, respectively) were not significant between these 
two groups. In the ACCEPT trial, similar results were obtained in 
the ustekinumab group (67.5% to 73.8%) with a higher efficacy 
compared to etanercept (56.8%) and a comparable safety profile. 
Consistent data regarding the efficacy of ustekinumab and its safe-
ty profile were observed through 5 years of follow-up.24 However, 
dose escalation (90 mg every 8 weeks) resulted in better improve-
ment in psoriatic patients who failed to respond to the initial regi-
men. In addition, since most patients with psoriasis experienced a 
flare-up after stopping ustekinumab therapy, there is no available 
data to support the long-term use of this biological drug.25

Figure 3 is an illustration of the therapeutic effect of ustekinum-
ab on psoriasis and two other major skin diseases, atopic dermatitis 
and hidradenitis suppurativa.

Ustekinumab off-label uses in dermatology
Ustekinumab has been used to treat many skin diseases given its 
distinct and targeted mechanism of action. However, robust evi-

dence from well-designed studies addressing uncommon and life-
threatening diseases is rare, and the scientific data available in this 
field are often restricted to small clinical reports. Thus, such lim-
ited evidence cannot support the use of ustekinumab as an initial 
therapy. On the other hand, there are a few low-level quality stud-
ies comparing IL-12/IL-23 blockers versus standard treatments. 
For this reason, ustekinumab should be reserved to treat cases that 
have failed or did not tolerate the first-line therapy and where other 
therapeutic alternatives are lacking. Table 1 summarizes the stud-
ies concerning the off-label use of ustekinumab.26–122

Ustekinumab for other subtypes of psoriasis
Psoriasis encompasses other infrequent variants namely guttate 
(GP), erythrodermic (EP), and pustular psoriasis (PP). GP accounts 
for nearly 2% of psoriatic patients and appears as red, scaly, small, 
raindrops-shaped papules that often erupt suddenly throughout the 
entire body.123 Although there is no consensus on the treatment of 
GP, severe forms of GP are commonly treated with topical corti-
costeroids, phototherapy, immunomodulatory drugs, or even bio-

Fig. 3. Therapeutic effect of ustekinumab on psoriasis (top figure), atopic dermatitis (lower right figure), and hidradenitis suppurativa (lower left 
figure). IFN, interferon; IL, Interleukin; Th, T-helper; TNF, Tumor necrosis factor; TARC, thymus and activation regulated chemokine; TSLP, thymic stromal 
lymphopoietin.
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logical therapy.124 Successful use of ustekinumab in recalcitrant 
GP has been reported in only a few of cases. For example, Brum-
mer et al26 reported that treatment with ustekinumab successfully 
cleared lesions in six patients with resistant GP.

EP accounts for 1–2.25% of all cases and represents one of the 
most severe and potentially life-threatening subtypes of psoriasis. 
It manifests as erythema covering >75% of the entire skin sur-
face.123 There is little scientific evidence that supports biological 
therapy in EP owing in part to the paucity of high-quality studies. 
However, the efficacy of ustekinumab in this rare form of psoriasis 
was highlighted in multiple clinical studies27–29,125,126 with impres-
sive response despite the failure of a first-line anti-TNFα therapy. 
A multicenter retrospective study in Italy showed that 80% of EP 
patients achieved PASI 75 following treatment for seven months.27

PP is a rare form of psoriasis characterized by non-follicular 
small pustules on erythematous and edematous skin. There are three 
clinical forms of PP: generalized form (GPP), palmoplantar pustulo-
sis form (PPP), and acrodermatitis continua of Hallopeau (ACH). It 
was postulated that the formation of pustules is caused by elevated 
levels of certain immune mediators, including IL-17F and IL-8, 
which can be targeted specifically by IL-23/IL-17 blockers. GPP 
(also known as von Zumbusch disease) can cause serious complica-
tions and can be life-threatening, especially if not diagnosed early 
and treated appropriately.123 There are only a few case reports30,31 
and one case series32 of GPP that have been successfully treated with 
ustekinumab. Arakawa et al123 reported that ustekinumab therapy 
led to remission in four GPP cases for 17 months. PPP is a chronic, 
debilitating form of PP and is usually resistant to treatment. PPP 
manifests pustules as an erythematous base, hyperkeratosis, and 
scales, affecting both palms and soles.123 Despite the lack of suf-
ficient evidence supporting ustekinumab use for PPP, there have 
been some reports of a satisfactory response among patients with 
PPP, including significant improvement in the QoL.127,128 ACH is 
an uncommon disease presenting with long-lasting sterile pustules 
specifically affecting the extremities of the digits.123 This form of 
PP has been found invariably recalcitrant to available antipsoriatic 
therapies. There are some case reports and one retrospective study 
on the efficacy of ustekinumab in the treatment of ACH.33–35 Treat-
ment with ustekinumab effectively improved clinical symptoms in 
seven patients with ACH and cleared skin lesions in 75% of patients, 
similar to that of anti-TNFα therapy.

Ustekinumab for pityriasis rubra pilaris (PRP)
PRP is a rare disease characterized by erythematous and papulos-
quamous eruption and is classified into six major types depending 
on clinical aspects, age of disease onset, and outcome.129 The etiol-
ogy of PRP is still not completely understood, and its management 
relies heavily on small clinical studies. There are diverse treat-
ments for PRP with varying outcomes, including topical corticos-
teroids, phototherapy, systemic retinoids, and immunosuppressive 
drugs. In recalcitrant cases, anti-TNFα therapy can significantly 
improve clinical symptoms, supporting the immunological patho-
genesis theory. In refractory PRP cases, ustekinumab has been 
reported to be valuable. A review of the PubMed database and 
the Cochrane Library until September 2017 by Kromer et al,130 
included all studies that evaluated the risks and benefits of sys-
temic treatments for PRP. There were about 182 studies (includ-
ing 475 patients) on systemic treatment of PRP. Ustekinumab was 
successful in 62.5% of patients compared to adalimumab (46.4%), 
etanercept (53.3%), and infliximab (57.1%). The comparison be-
tween ustekinumab and acitretin (which is commonly considered 
as a reference treatment in PRP) showed a substantially elevated 

rate of excellent response in patients treated with ustekinumab (p = 
0.001). The general AE reporting rate was 26.4%, but this was sig-
nificantly elevated with retinoids (34.1%) then MTX (16.5%) and 
the lowest proportion was reported with biological agents (8.8%).

Ustekinumab for hidradenitis suppurativa (HS)
HS is a long-term inflammatory dermatosis that often causes seri-
ous morbidity and manifests mostly after puberty with inflamed 
nodules and painful deep-seated abscesses with sinus tracts mainly 
localized in body zones rich in apocrine glands including axillary 
and anogenital areas.131 Although some drugs have been proven to 
be successful in managing HS symptoms, there is a lack of solid 
evidence supporting them. The pathogenesis of HS is complex, but 
TNFα and IL-17 are recognized as central players in HS pathogen-
esis.132 One study suggests that gene polymorphisms in IL12Rβ1 
may be linked to some severe forms of HS.133 Currently, adali-
mumab, a type of anti-TNFα antibody, is the only biological agent 
available for the treatment of HS.134 However, failure of treatment 
was common and consideration of second-line biological drugs, 
like ustekinumab, may be valuable for inhibiting Th17 responses. 
In this perspective, an open-label, uncontrolled trial was conducted 
in 17 patients with HS to determine the benefit of ustekinumab 
therapy. At week 40 when the clinical trial ended, 47% of patients 
achieved HiSCR-50 (50% improvement in HS inflammatory le-
sions), and >82% of cases obtained moderate or remarkable relief 
of their modified Sartorius score.36

Ustekinumab for neutrophilic diseases
Pyoderma gangrenosum (PG), Sweet syndrome (SS), subcorneal 
pustular dermatosis, and erythema elevatum diutinum are het-
erogeneous diseases that may be grouped as neutrophilic derma-
toses (ND) hallmarked by a sterile, neutrophil-rich infiltrate on 
the skin.135 Clinical management of ND is challenging due to the 
lack of universally accepted and validated guidelines. The stand-
ard treatment for idiopathic PG and SS is systemic corticosteroids, 
whereas dapsone is the first line of treatment for subcorneal pustu-
lar dermatoses.136 However, the use of biological therapy, primar-
ily TNFα blockers, anti-IL-1, anti-IL-17, and anti-IL-23, is rap-
idly expanding for the management of widespread and aggressive 
PG.137 Although detailed knowledge of how biological drugs work 
for ND is lacking, the expression of several cytokines, includ-
ing TNFα, IL-8, IL-17, and IL-23, is up-regulated in PG, which 
may explain the favorable clinical results obtained with biological 
agents such as ustekinumab.37 A literature search found 21 out of 
23 ND patients had responded positively to ustekinumab (17 PG, 4 
amicrobial pustulosis of the folds, 1 Bowel-associated dermatosis-
arthritis syndrome, and 1 SS), 16 (70%) were complete responders 
and 5 (21%) were partial responders, whereas no responses were 
seen in one PG and one chronic recurring Sweet syndrome.38–40,138

Ustekinumab for muco-cutaneous manifestations of Behçet 
disease (BD)
BD is a primary vasculitis that manifests specifically as repetitive 
attacks of oral-genital ulcers, cutaneous inflamed lesions, and uve-
itis with multiple organ system involvement, including the gastro-
intestinal, cardiopulmonary and nervous systems.139 Whereas sys-
temic vasculitis may lead to worse outcomes, repetitive aphthous 
ulcers often lead to substantial QoL impairment. These mucocu-
taneous lesions could be managed with colchicine, azathioprine, 
thalidomide, and more recently apremilast, although with varying 
success and potential serious AEs. However, increased knowledge 
of the immune mechanisms responsible for BD has prompted the 
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use of biological drugs to manage the more intractable mucocuta-
neous lesions. One randomized controlled, 4-week trial and sev-
eral observational studies and case series have showed that TNF-α 
inhibitors are promising treatment options for recalcitrant mu-
cocutaneous disease.140 Additionally, emerging evidence suggests 
that Th1 and Th17 responses may contribute to the pathogenesis 
and progression of BD. This, together with higher IL23 levels and 
Th17/Th1 ratios in BD patients, suggest that ustekinumab may be 
reasonable and effective for the management of BD. In support of 
this, ustekinumab has been demonstrated to be effective in amelio-
rating recalcitrant oral aphthous ulcers in BD patients in clinical 
trials.41,140

Ustekinumab for atopic dermatitis (AD)
AD is a frequent pruritic inflammatory dermatosis, which com-
monly follows a remitting-relapsing chronic course and commonly 
develops in a patient with atopic diathesis.141 The pathogenesis 
of AD is thought to be both skin barrier alteration and immune 
system dysfunction. The conventional treatments rely on topical 
anti-inflammatory drug medication and adequate skin hydration. 
However, systemic immunosuppressant medications are required 
for moderate to severe forms of the disease; although they are 
discouraged, owing to their transient efficacy and a poor AE pro-
file.142 The identification of new immune targets involved in the 
process of AD has prompted the development of innovative thera-
peutics, including biological therapy and small molecules. Studies 
have showed that IL17 and IL22 expression are upregulated in AD 
lesions and represent therapeutic targets for ustekinumab treat-
ment.42 Indeed, many studies have investigated the efficacy of IL-
12/IL-23 inhibitors for patients with recalcitrant AD. Pan Y et al143 
conducted a systematic review on the current scientific literature 
up to September 2017 concerning the benefits of ustekinumab in 
AD. They found that this biological drug has been administered in 
8 case reports and 2 randomized placebo-controlled trials (RCTs) 
of 107 cases. In general, the observational studies have shown 
more clinically relevant effects, whereas RCTs have not shown a 
significant advantage of ustekinumab over the placebo.

Ustekinumab for Alopecia Areata (AA) and Vitiligo
AA is a common IMD that causes temporary and permanent non-
scarring alopecia.144 Treatment of AA by conventional systemic 
therapy is hampered by its AEs and limited efficacy. Nevertheless, 
the discovery of the role of various immunological mediators, in-
cluding Th1, Th2, and IL-23, in the pathological process of AA 
has opened a door to test the efficacy of ustekinumab for AA.145 
There are some reports on the therapeutic efficacy of ustekinumab 
for new onset AA and some cases with hair regrowth.146 Guttman-
Yassky et al43 demonstrated that treatment with ustekinumab for 
20 weeks improved clinical symptoms in three moderate-to-severe 
AA patients without AEs. Likewise, ustekinumab has safely ame-
liorated clinical symptoms in three pediatric patients with mild, 
moderate, and severe AA.44

Vitiligo is also a long-lasting IMD and consists of depigmented 
skin macules. Like AA, Th17 cells are the major immune players 
in vitiligo pathogenesis.147 Therefore, it is reasonable to test the 
therapeutic efficacy and safety of ustekinumab for vitiligo. How-
ever, there is only one report on the use of ustekinumab for repig-
mentation in a patient with both psoriasis and vitiligo, and these 
findings contrast other observations.45,148,149

Miscellaneous
Ustekinumab has been reported for the treatment of miscellane-

ous cutaneous disorders, like SAPHO syndrome (Synovitis, 
Acne, Pustulosis, Hyperostosis and Osteitis), lichen planus (LP), 
bullous pemphigoid (BP), and lupus erythematosus (LE). Some 
data have demonstrated an aberrant Th17 response in SAPHO 
patients, which suggests that ustekinumab may be promising for 
SAPHO syndrome.46 However, only 5 SAPHO cases have been 
treated with IL-12/IL-23 blockers with mixed results on cutane-
ous symptoms, as less than half of the patients had improved 
symptoms.150

There is little evidence on the efficacy of IL12/IL23 blocker for 
LP. Although treatment with ustekinumab was reported to remark-
ably improve extensive erosive oral LP in one report,47 ustekinum-
ab treatment failed to show any efficacy in another report with 
concomitant psoriasis and erosive LP.48 There are controversial 
reports on the therapeutic effect and deteriorative outcomes of 
ustekinumab in BP patients.151,49

Regarding systemic LE, a phase II RCT conducted by Ronald 
van Vollenhoven et al152 to test the therapeutic effect of ustekinum-
ab in 102 active systemic LE patients has revealed that addition 
of ustekinumab to standard therapy enhances therapeutic efficacy. 
Although peculiar cases of ustekinumab-induced lupus-like cuta-
neous reactions have been reported, many successful cases have 
been widely reported on the therapeutic efficacy of ustekinumab 
for cutaneous and discoid LE.50,51,153

AEs observed with ustekinumab
Most AEs associated with ustekinumab use are non-serious, oc-
casional, and usually do not lead to drug discontinuation.154 The 
most commonly encountered AEs are headaches, asthenia, ab-
dominal pain, and upper respiratory infections. Local injection site 
reactions are also usually mild in severity and infrequent, probably 
due to a minimal injection regimen.3 Moreover, there have been 
no reported differences in the frequency of AEs or abnormal labo-
ratory tests between ustekinumab- and placebo-treated patients in 
clinical trials.154

IL-17 is a pro-inflammatory cytokine that can participate in 
immune responses against bacterial and fungus infections. There-
fore, treatment with ustekinumab to block the IL-12/IL-17-related 
signaling may increase susceptibility to infections.155 However, 
the infectious risk due to ustekinumab was low in clinical trials. 
Furthermore, analysis of published register-based data did not 
show higher rates of severe infections when comparing usteki-
numab to either anti-TNF agents or conventional systemic thera-
pies.156,157 In particular, the potential risk of active tuberculosis 
infection due to ustekinumab seems to be reduced when compared 
to TNFα inhibitors.158 In addition to infectious hazards, the most 
reported AEs of ustekinumab treatment are the risk of major ad-
verse cardiovascular events (MCCEs); a meta-analysis of RCTs 
in 2011 reported an increase in MCCEs during the first months 
of drug exposure, although there was no significant increase in 
the frequency of MACEs when compared to placebo.159 This re-
port is correlated with experimental studies, in which the IL23/
IL17 pathway negatively affects atherosclerotic plaques stability. 
Nonetheless, a case-control study of ustekinumab from the French 
National Health Insurance database involving more than 9,000 
subjects during the period of 2010–2016, revealed a significant 
link between ustekinumab therapy and the onset of acute coronary 
syndrome, while stroke was identified only with high cardiovas-
cular risk patients.160 Another important concern regarding usteki-
numab use is its potential oncogenic effect. Animal-based studies 
have revealed that blockade of IL12/IL23 signaling may increase 
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the risk of malignancies.161 However, despite scarce reports of 
malignant tumors, cancer incidence itself was low in clinical tri-
als and in register-based data.157 There are neither observational 
studies, nor case reports on any increase of adverse outcomes in 
pregnant women.

Furthermore, ustekinumab treatment-related uncommon cuta-
neous and systemic AEs have been reported, including immune-
mediated dermatological disorders. The most reported skin and 
systemic AEs associated with ustekinumab use are summarized in 
Tables 2 and 3, respectively.

Despite the reassuring data, the real-life, long-term safety of 
ustekinumab application still requires investigation across inter-
national, multicentric registry-based cohorts and from long-term 
outcome trials. Hence, greater vigilance should be applied when 
starting treatment: a thorough history, a holistic clinical examina-
tion with careful assessment for active infections (screening for 
possible tuberculosis, checking cardiovascular and neurological 
functions and ruling out any malignancy), along with laboratory 
workup (complete blood count and metabolic profile) should be 
considered before the initiation of ustekinumab. Subsequent labo-
ratory tests and follow-up monitoring are recommended.

Future prospects
Currently, a myriad of biological drugs (either approved or used 
off label) are available for the treatment of skin diseases. For pso-
riasis, physicians have a plethora of biological drugs with different 
immunological mechanisms that could be used. Nonetheless, some 
patients can be resistant or show a declining response to biological 
agents over time.

Combination therapies with biological and conventional sys-
temic drugs are well documented and have become a routine prac-
tice for many clinicians. However, for patients with a severe, debil-
itating skin disease, who do not respond to biological monotherapy 
and combination with conventional systemic agents, dual biologi-
cal therapy (DBT) could be considered. However, uncertainty in 
the real safety profile of such a combination still exists, particular-
ly for the high risk of opportunistic infection and MACEs, and data 
on the safety of such DBT in dermatology remain anecdotal. The 

limited number of case reports and case series mostly originated 
from gastroenterology and rheumatology-based studies and/or reg-
istries, but DBT has been used in many cases with PsA/psoriasis or 
inflammatory bowel diseases/psoriasis simultaneously. Available 
studies have shown that DBT ustekinumab/anti-TNFα blockers 
have better efficacy than each drug alone, although there are dif-
ferent safety profiles, without serious AEs. In dermatology, only 
one case of DBT of ustekinumab/adalimumab has been reported 
in a patient with a long-lasting, resistant PPP for a quasi-complete 
clearance over 4 months with a good overall tolerance. Thus, a 
window of opportunity does exist for the use of DBT with usteki-
numab and other biological drugs for the treatment of psoriasis 
or other skin diseases, paving the way to a tailored, personalized 
treatment regimen. Despite the paucity of data, dermatologists can 
be inspired from the use of DBT in other fields, like gastroenterol-
ogy and rheumatology. The main future challenges are to deter-
mine the optimal treatment dosing regimen and the best timing 
for DBT to result in the most effective and safest outcomes for 
patients.

Conclusions
Continual progression in psoriasis research has revealed the cru-
cial role of Th17 responses in its pathogenesis. The successful 
treatment with IL-12/IL-23 blockers for moderate-to-severe pso-
riasis is considered a major scientific breakthrough, being the first 
non-TNFα targeted biological drug in the treatment of psoriasis 
and heralded as a new era of more precise biological therapy with 
higher efficacy and favorable safety profiles. Additionally, the rec-
ommended dosage regimen of ustekinumab is appropriate for most 
patients because its initial efficacy seems to be sustained fairly well 
over a 5-year treatment duration. The potential risk of infection or 
other AEs in patients with ustekinumab are mild, similar to that in 
placebo-treated patients, and there is no evidence of any overall 
increased risk in post-marketing reports. However, like other new 
biological drugs, high cost and unknown long-term effects limit 
the approval of this drug as a first-line treatment for moderate-to-
severe psoriasis. Emerging data suggest that ustekinumab may be 
well tolerated and efficient for HS, PRP, and BD, as well as several 

Table 2.  Skin adverse events associated with ustekinumab

Skin lesions related to the 
administration of treatment Bruising, pruritus, pain, erythema, swelling, skin rash

Skin infections Bacterial infections: cellulitis, mycobacterium abscessus, secondary syphilis, staphylococcal 
skin colonization; Viral infections: disseminated verrucae, condyloma acuminate, herpes zoster; 
Fungal infection: cutaneous candidiasis, Nocardia infection, disseminated sporotrichosis; 
Parasitic infections: plurifocal cutaneous leishmaniasis, cutaneous protothecosis

Skin neoplasia Non melanoma skin tumors: basocellular carcinoma, spinocellular carcinoma; Malignant 
melanoma; Skin lymphomas/Lymphoproliferative disorders: Jessner-Kanof type, 
anaplastic large T cell lymphoma, mycosis fungoides; Multiple dermatofibromas

Immune mediated diseases «de novo» psoriasis and exacerbation of prior psoriasis or psoriasis subtypes; Atopic-dermatitis and its 
exacerbation; Lupus-like paradoxical reaction; Alopecia areata; Skin vasculitis; Vitiligo; Dermatomyositis; 
Localized scleroderma (morphea); Lichen or lichenoid reaction; Frontal fibrosing alopecia; Linear IgA 
bullous dermatosis; bullous pemphigoid; Erythema multiforme; Erythroderma, exfoliative dermatitis 
and hypersensitivity reaction; Erythematous annular eruptions; Fixed drug eruption; Urticaria

Other skin events Hidradenitis suppurativa; Seborrhoeic keratosis; Thrombotic thrombocytopenic 
purpura; Sarcoidosis-like paradoxical reaction; Wells syndrome; Erythema annulare 
centrifugum; Cutaneous focal mucinosis; Lentigines; Spiny follicular hyperkeratosis

IgA, Immunoglobulin A.
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other dermatological conditions, but there are few clinical trials 
to evaluate the therapeutic efficacy and safety of ustekinumab for 
these disorders.

This review highlights the significant progression during the 
past decade on the optimal use of ustekinumab for skin diseases 
beyond its labeled indications. However, there are some limita-
tions, like the lack of RCTs and the limited amount of available 
data, especially regarding the off-label use of the biological drug. 
Further studies with larger cohorts of patients and robust designs 
are warranted to investigate ustekinumab’s efficacy, safety, and 
long-term effects in off-label uses for other skin diseases.
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Introduction
Major depressive disorder (MDD) is a common psychiatric diag-
nosis affecting millions worldwide. While monoaminergic drugs 
have long been the preferred method of treatment for MDD, they 
can often take weeks or months to provide a therapeutic effect, with 
many patients failing to find any relief in their depressive symp-
toms. Patients who have failed after two oral therapies are con-
sidered to have treatment-resistant depression (TRD). Given the 
high prevalence of MDD and potentially subsequent TRD, there 
has been a surge of interest in finding new short-acting therapies, 
novel to the standard methods of treatment. Ketamine was first 
discovered in the 1970s as an anesthetic medication but has since 
been extensively studied in multiple research projects. Through 
antagonism of the N-methyl-D-aspartate (NMDA) receptor, keta-
mine works to decrease hyperalgesia but has also been found to 
affect descending inhibitory serotonergic pathways. Research 
has shown that Ketamine, given regularly in a controlled manner, 

could be a promising potential treatment for patients with TRD and 
other depressive disorders, including post-traumatic stress disorder 
(PTSD), as it has been shown to rapidly reduce suicidality and 
depression in patients who have failed other therapies.

MDD and other depressive disorders have become increasingly 
prevalent within the United States, especially since the beginning 
of the COVID-19 pandemic in 2020.1,2 Data from the National 
Survey of Drug Use and Health (NSDUH) reported that around 
21.0 million US adults (8.4% of all US adults) experienced a major 
depressive episode in 2020, an increase from 16.2 million (6.4% 
of all US adults) in 2016.3 Despite increased public health efforts 
and advancements in the field of psychiatry, there is still an in-
creasing amount of depression without a compensatory increase in 
treatment response.4 A recent study showed that this phenomenon, 
otherwise known as the “treatment-prevalence paradox” (TPP), 
was prevalent in that despite increased efforts to address MDD, the 
incidence of MDD diagnosis continues to rise.4,5 The TPP strongly 
suggests an overdiagnosis of MDD or lack of response in treatment 
for MDD as the causes for this discrepancy.6,7

Many patients who suffer from MDD are hesitant to seek prop-
er treatment, and those who do start taking common antidepres-
sant medications tend to experience high treatment failure rates 
or minimal improvement in their symptoms.8 Some randomized 
control trials (RCTs) have shown that serotonin selective reuptake 
inhibitors (SSRI), the current standard of treatment, were only 
20–30% more effective than that of a placebo.9 Other medications 
such as oral monoaminergic drugs carry a dangerous warning of 
increasing risks of suicidal ideation and behaviors. Patients must 
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wait weeks to months to experience any form of symptomatic re-
lief.10 When patients are unable to respond to over two treatment 
regimens for their depressive symptoms, they are considered to 
have treatment-resistant depression (TRD) which is associated 
with greater levels of suicidality and higher risks of repeated hos-
pitalization.11–13

Traditional pharmacological methods of treatment
The standard of care for pharmacological treatment of depression 
has gone largely unchanged for many years.13 The basis of using 
these monoaminergic drugs ties into the pathophysiology of MDD, 
where levels of monoamines such as dopamine, norepinephrine, ser-
otonin, epinephrine, and histamine are seen to be reduced. As such, 
the traditional pharmacological approach was to address this mono-
amine shortage by using pharmacological methods to increase their 
levels.14 Despite initial success with this approach, there has been 
a large number of patients reporting no significant improvement in 
their symptoms, thus necessitating newer treatment methods to be 
considered.15–17 With each subsequent generation, monoaminergic 
medications have become more tolerable, however, the targets and 
basis behind treatment have remained largely unchanged.18 There 
is interest in research beyond the scope of the monoamine hypoth-
esis—such as looking at other signaling cascades associated with 
stress responses and depressive symptoms.18,19

Mechanisms of action of current antidepressant treatments

Monoamine oxidase inhibitors (MAOIs)
MAOIs inhibit the activity of monoamine oxidase, which func-
tions to break down serotonin, norepinephrine, and dopamine in 
the brain. By inhibiting monoamine oxidase, MAOIs increase the 
levels of these neurotransmitters in the brain, thus enhancing their 
neurotransmission. While MAOIs have been shown to have great-
er efficacy than subsequent generations of antidepressants, they 
are also much less tolerable. Major side effects of MAOIs include 
an increased risk of hypertensive crisis, dizziness, sexual dysfunc-
tion, and GI upset.

Tricyclic antidepressants (TCAs)
TCAs work by blocking the reuptake of both serotonin and norepi-
nephrine but also affect other neurotransmitter systems, such as ace-
tylcholine and histamine, thus precipitating antimuscarinic effects, 
including potential cardiovascular complications. Some examples of 
TCAs include amitriptyline, nortriptyline, and imipramine.

Serotonin-noradrenaline reuptake inhibitors (SNRIs)
SNRIs work by inhibiting the reuptake of both serotonin and nor-
epinephrine, which increases the availability of both neurotrans-
mitters in the synaptic cleft, thus enhancing their neurotransmis-
sion. SNRIs include venlafaxine, duloxetine, and desvenlafaxine.

Selective serotonin reuptake inhibitors (SSRIs)
SSRIs increase the availability of serotonin in the synaptic cleft by 
inhibiting the reuptake of serotonin in the brain, leading to subse-
quent increased serotonin neurotransmission. With both SSRIs and 
SNRIs, patients require at least 4–6 weeks to acquire any optimal 
effect.

Atypical antidepressants
These miscellaneous medications have different mechanisms of 
action that have been proven to act as an antidepressant. Some ex-

amples include bupropion, which works by increasing the levels of 
dopamine and norepinephrine in the brain, and mirtazapine, which 
works by enhancing the release of both serotonin and norepineph-
rine and also blocks certain serotonin receptors.

Ketamine as a treatment for depression

Mechanism of action
Discovered first in the 1960s as an anesthetic, ketamine has been 
extensively utilized for intraoperative anesthesiology and in acute 
trauma settings. Ketamine is a phencyclidine derivative, which is 
a compound primarily classified as a hallucinogen. Through com-
petitive antagonism of the N-methyl-d-aspartate (NMDA) recep-
tor, ketamine antagonizes the amplification of pain signals and 
modulates the central sensory processing of pain for analgesic ef-
fects. Higher doses of ketamine work on other receptors, including 
monoamine transporters, dopamine D2 receptors, and voltage-gat-
ed sodium channels. By activating other receptors, major side ef-
fects of ketamine start to take effect; primarily, hallucinations, eu-
phoria/dysphoria, agitation, and anxiety. By inhibiting the NMDA 
receptors on the GABAergic interneuron, ketamine causes a large 
surge of glutamate activity that works to depolarize the postsynap-
tic neuron in releasing sodium and calcium. The subsequent ions 
cause the release of vesicle-filled brain-derived neurotrophic fac-
tor (BDNF) into the synaptic cleft.20 Please see Figure 1 for fur-
ther analysis of ketamine’s molecular mechanism of action as an 
antidepressant.

Ketamine inhibits NMDA receptors primarily present on inhibi-
tory GABAergic interneurons at lower subanesthetic doses. By in-
hibiting an inhibitory neurotransmitter, there is a surge of glutamate 
release from the increased depolarization of the presynaptic neuron, 
which then binds to and activates postsynaptic α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptors (AMPAR). The sub-
sequent Na+ and Ca2+ ions entering the postsynaptic cell activate 
the voltage-gated calcium channels, which release vesicles filled 
with brain-derived neurotrophic factor (BDNF) into the synaptic 
space. BDNF acts upon tropomyosin receptor kinase B (TrkB) to 
activate the MEK–ERK and PI3K-Akt signaling pathways to pro-
duce the mechanistic target of rapamycin (mTOR). mTOR acts as 
a facilitator of protein synthesis and is believed to play a role in 
neuroplasticity. The downstream protein synthesis resulting from 
this cascade ultimately gives rise to increased synapse generation, 
thought to play a role in ketamine’s antidepressant effects.

Current studies showcasing antidepressant effects of ketamine
Once studies found that lower/subanesthetic doses of ketamine 
could provide antidepressant effects, a significant surge of inter-
est in studying ketamine took place and has continued over the 
past decade or so. Ketamine can be administered by a variety of 
routes including the oral, sublingual, transmucosal, intranasal, in-
travenous, intramuscular, and subcutaneous routes. The relation-
ship between the route of admission, dosing, timing of doses, and 
resulting effect is complex, given that ketamine has major effects 
on multiple organ systems, especially, and significantly, the car-
diovascular system. Further studies should be conducted towards 
deciding optimal routes of administration, given that these factors 
are limiting for ketamine to be prescribed in an outpatient setting.21 
There is some evidence that the mechanism of Ketamine’s antide-
pressant effects comes from downstream signaling as a result of 
α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor 
(AMPAR) activation. Studies have shown that applying an antago-
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nist to AMPAR greatly diminishes the resulting antidepressant ef-
fect, which suggests that much of ketamine’s ability to function as 
an antidepressant comes from the downstream effects of AMPAR 
activation, notably the activation of tropomyosin receptor kinase 
B (TrkB) resulting in the production of the mechanistic target of 
rapamycin (mTOR).22

A recent study conducted in 2011 focused on the administration 
of ketamine to induce antidepressant-like effects in rats. Intraperi-
toneal ketamine of 10 mg/kg was administered 30 minutes prior to 
inducing escape failures for learned helplessness and subsequent 
antidepressant effects. One of the controls was a specific inhibitor 
of the AMPA receptor to measure learned helplessness and depres-
sion by utilizing the tail suspension test. Through multiple reviews, 
this study concluded that the anti-depressant effects of ketamine 
were partially abolished in the cohort of subjects that had direct 
AMPA receptor antagonism, suggesting that AMPA receptor ac-
tivations play a crucial role in the antidepressant-like effects of 
ketamine.23

Studies aimed at understanding ketamine’s use as an antidepres-
sant have suggested that its psychotomimetic side effects play some 
role in facilitating its antidepressant effects. However, because of 
its addictive potential and side effect profile, many providers are 
concerned about its long-term administration, thus necessitating 
further research into mitigating its psychotomimetic side effects 
and addictive potential. These studies suggest that the R-ketamine 
enantiomer is able to facilitate antidepressant effects with limited 
psychotomimetic side effects and reduced addictive properties, 

which suggests enantiomerically pure R-ketamine as a potential 
novel treatment with reduced side effects.24–26 While S-ketamine 
seems to produce psychotomimetic effects and with greater addic-
tive potential, these side effects could play some role in producing 
its antidepressant effect.26–28 Current ketamine infusion treatment 
involves a racemic mixture of both R- and S-ketamine. A ketamine 
intranasal spray (esketamine/Spravato) of enantiomerically pure 
S-ketamine was approved by the FDA in 2019 as a treatment op-
tion for patients who have TRD. Early case reports showed acute 
resolution of depression and suicidality in patients in patients who 
had taken the spray.29 suggesting a potential role for ketamine in 
the treatment of depression. More recent clinical trials following 
FDA approval have shown that treatment of esketamine and an 
oral antidepressant together can even lead to longer-lasting effects 
and can prevent relapse of symptoms.30,31

Unique qualities of ketamine treatments
As discussed previously about ketamine’s mechanism of action, 
ketamine is unique in that it affects multiple receptors at higher 
doses, similar to other select medications. With a half-life of 45 
minutes, ketamine can work on cholinergic, aminergic, opioid, 
and voltage-gated sodium channel receptors with increasing doses, 
having a modulatory role in sedation and analgesia.32 It also al-
lows for spontaneous respiration by not affecting the pharyngeal 
and laryngeal reflexes, especially important during extubation for 
anesthesia. As a cyclohexanone derivative, ketamine creates a dis-
sociative effect on the patient that has been actively analyzed for 

Fig. 1. Mechanism of ketamine as an antidepressant. 
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analgesia and sedation. From realizing its dissociative properties, 
ketamine was further studied as a synergistic medication, given its 
effect on multiple receptors. In 2004, a research study focused on 
the synergistic effect between ketamine and morphine for analge-
sic purposes. They found that humans who received both ketamine 
and morphine as opposed to morphine alone experienced a greater 
amount of pain relief in their burns, opening the door for central 
sensitization.33 Along with affecting the other receptors, ketamine 
at higher doses blocks high-affinity dopamine D2 receptors. With 
its increasing popularity as a “club drug” in the 1990s, the addict-
ing ketamine attracted younger generations for its role in produc-
ing delirium, slowing down the perception of time, and altering 
states of consciousness.34 A study analyzed the effects of chronic 
ketamine use in the said population, which revealed atrophy of the 
frontal, parietal, occipital cortices, prefrontal lobes, brain stem, 
and corpus striatum. If administered in a controlled environment 
to limit its potential abuse, ketamine’s psychotomimetic effects 
could have a strong potential role in the treatment of analgesia and 
even depression.

Dissociative effects and their role in ketamine treatments
While ketamine has been shown to be a promising treatment op-
tion for TRD, it is associated with robust psychotomimetic side 
effects. These side effects limit its potential as a treatment choice, 
as there are concerns over treatment safety and potential sub-
stance abuse. Discussion on the topic generally takes place over 
whether these side effects are necessary for ketamine treatment 
efficacy or if they are merely an unintended off-target effect.35 
Studies performed on ketamine’s full psychotomimetic effect 
profile show that dissociation is the most closely correlated psy-
chotomimetic side effect to treatment effectiveness though it is 
still unclear whether dissociation is an unintended off-target effect 
of ketamine or if the subjective experience itself plays a key role 
in facilitating its antidepressant effects.36 Some studies suggest 
that dissociation should be viewed as a facilitator of depression 
treatment, rather than an unintended side effect.37 This associa-
tion is typically compared in parallel to that of other dissociatives 
that can produce similar antidepressant effects, albeit through 
different mechanisms of action with the resolution of depression 
thought to be associated with subjective dissociative experiences 
produced by these substances.38 Studies regarding dissociatives 
suggest that the subjective experience during dissociation has a 
psychological role, rather than a physiological one, in producing 
positive mood changes and treating depression.39 Clinical stud-
ies have shown that other NMDA receptor antagonists with little 
to no dissociative properties are unable to produce a comparable 
response to that of ketamine. While these NMDA receptor an-
tagonists were able to produce antidepressant effects, they are 
shorter-lived and less profound.40,41 However, some clinical tri-
als have suggested that there is no real correlation between the 
response to ketamine as an antidepressant and its acute dissocia-
tive effects.42,43 These studies have suggested that dissociation, 
rather than being a feature of ketamine’s antidepressant effect, is 
an unintended side effect associated with its mechanism of action, 
unrelated to its antidepressant effect.44 Research continues to be 
carried out to evaluate the safety of ketamine as an antidepres-
sant due to its dissociative properties. As mentioned before, the 
R-ketamine enantiomer seems to have a reduced side effect pro-
file while retaining its antidepressant effectiveness, making it a 
promising safer treatment option than that of current ketamine in-
fusions and S-ketamine.25 An analysis of literature has been con-
ducted to assess if studies are able to correlate dissociation with 

treatment outcome but concluded that there is too much variation 
between studies to truly make a conclusion about the relation-
ship.45 The variation between studies suggests that there is a need 
for further research to determine whether or not dissociation truly 
plays a role in ketamine treatment efficacy.

Synergistic use of ketamine with traditional methods of treat-
ment
Ketamine has been analyzed for its potential to be used synergisti-
cally with other traditional methods of treatment. Oral antidepres-
sants were studied with concurrent use of ketamine, with results 
showing that the antidepressant effects were prolonged in patients 
with TRD.30 This finding has opened up discussion and the po-
tential to use sub-dissociative doses of ketamine alongside other 
treatments to enhance their effects. A study from 2017 showed 
that the coadministration of ketamine and fluoxetine had signifi-
cant antidepressant effects on rats; however, the combination of 
ketamine and quetiapine did not produce similar results. The afore-
mentioned ketamine/fluoxetine combination concurrently showed 
an increase in the antioxidant activity of superoxide dismutase, 
leading to decreased oxidative damage, and opening future stud-
ies towards anti-inflammatory properties for neuroprotection.46 
Alongside oral antidepressants, studies have shown that the ad-
ministration of ketamine in patients undergoing electroconvulsive 
therapy (ECT) results in increased cognitive functioning compared 
to patients who receive ECT alone. Patients who receive ECT are 
typically those who have TRD and have failed psychotherapy and 
medication management. The possibility of harmful behaviors be-
tween the start of treatment and the response to ECT is also a major 
challenge given that ECT takes some time to achieve its optimal 
effect. A study was conducted in 2015 to analyze the relationship 
between ketamine and ECT for its synergistic effects on the recov-
ery of patients. Given the strong concern for ketamine’s potential 
for cognitive impairments, especially at certain doses, further stud-
ies will continue to be conducted for proper research. This research 
analyzed 22 patients with MDD who underwent ECT and received 
ketamine and propofol vs. only propofol. While the results were 
not statistically significant in showing a reduction in depression 
severity between the two groups, this study does point towards a 
better recovery time for cognitive performance in the group who 
received ketamine compared to the control group.47

Cognitive behavioral therapy (CBT) and other conservative 
forms of treatment, including psychotherapy, have been shown to 
sustain and enhance the effects of ketamine as an antidepressant, 
further supporting ketamine’s synergistic theoretical effects. There 
are very limited studies that evaluate ketamine-assisted psycho-
therapy for TRD. One study from 2022 concluded that adjunct 
psychotherapy may play a role in the treatment of TRD, but pa-
tients were found to have temporary neural changes.45 A separate 
clinical trial from 2021 assigned patients to receive CBT alongside 
intravenous ketamine vs. the control group of only ketamine for 
TRD. Subjects in the CBT group showed clinically and statisti-
cally significant improvement towards the end of the study, which 
further supports this treatment approach.48 The synergistic proper-
ties that ketamine has been shown to demonstrate alongside other 
methods of treatment suggest clinical use as a potentiating agent. 
Further research on using ketamine as a potentiating or synergistic 
agent alongside well-established traditional forms of treatment is 
needed before making any conclusions; this proposed use of keta-
mine at sub-dissociative doses to potentiate the effects of more 
well-established treatment options could be a theoretically safer 
option for patients with TRD.
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Future directions
Because of its success in treating previously treatment-resistant 
patients, using ketamine as a glutamate modulator has sparked in-
terest in using drugs with similar mechanisms of action as new 
potential treatments for depression. Like ketamine, propofol is also 
able to induce antidepressant effects, and xenon, which also has 
theoretical use as an anesthetic, has been shown to be successful in 
the rapid reduction of depressive symptoms and anxiety symptoms 
in animal models.49,50 However, because of its potential for abuse 
and addiction, there are valid concerns about the long-term re-
peated use of ketamine. Despite many case studies and short-term 
studies reporting treatment success, there is still limited data on the 
long-term repeated administration of ketamine and its longitudinal 
risks and complications in patients with TRD and other psychiatric 
illnesses. Future large-scale longitudinal studies regarding treat-
ment efficacy and safety are strongly encouraged before ketamine 
can be widely administered safely in an outpatient setting for TRD.

Conclusion
FDA approval of ketamine as a potential treatment for TRD has 
undoubtedly already affected how the treatment of MDD, along-
side other psychiatric disorders, will be approached. In this review, 
we presented the efficacy of ketamine as a treatment for depres-
sion and identified major targets of its mechanism of action. While 
previous treatment centered on monoaminergic modulation, keta-
mine treatment relies upon NMDA receptor antagonism leading to 
downstream AMPAR blockade, which may explain its consider-
able efficacy for those who have failed treatment with first-line 
monoaminergic drugs such as SSRIs. The success of ketamine 
treatment has revealed the complex pathogenesis of MDD; there is 
hope that future studies on ketamine may lead to the exploration of 
new pharmacological targets and future drug development.
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Introduction

Transient receptor potential vanilloid 1 (TRPV1)
In 1997, TRPV1 receptor was cloned from the dorsal root ganglia 
(DRGs) neurons of rats.1 Since then, multiple studies have been 
conducted to elucidate the structure, mechanisms and roles of the 
TRPV1 channel in health and disease. The TRPV1 channel is a non-
selective cation channel characterized by cation influx when acti-
vated1 with a very high calcium (Ca2+) permeability (PCa/PNa ∼ 10).1 
Previous research highlights that several endogenous and exogenous 
stimuli activate the TRPV1 channel. More specifically, the channel 
is activated by noxious heat (>43 °C), anandamide, low extracellular 
pH, redox state, prostaglandins (PGs), nerve growth factor (NGF), 
substance P (SP), oxytocin, lysophosphatidic acid, 9, 13 and 20-hy-
droxyoctadecadienoic acid, linoleic acid as well as the highly selec-

tive agonists capsaicin and resiniferatoxin (RTX).1–3

TRPV1 structure
Figure 1 depicts TRPV1 structure. TRPV1 channel possesses 
a tetrameric structure with 6 transmembrane domains and pore-
forming hydrophobic stretch linking segment 5 (S5) and S6.4 The 
channel has an unusual characteristic in which it has cytosolic in-
tracellular C and N termini.5 Notably, a considerable amount of 
literature showed that the TRPV1 channel contains multiple phos-
phorylation sites whereby its activity can be regulated by various 
kinases, including protein kinase A (PKA), PKC, Ca2+/calmodulin 
dependent kinase II (CaMKII), sarcoma (Src) kinase, and the Ca2+-
dependent phosphatase, calcineurin.6

TRPV1 activation
There are several mechanisms for TRPV1 activation. In more 
detail, TRPV1 agonists (e.g. capsaicin and anandamide) activate 
the channel by direct binding while the non-agonist activators can 
induce sensitization for the channel through post-translational 
modifications, changing one or more of the following parameters: 
membrane potential, pH, temperature threshold, or trafficking to 
the plasma membrane.7,8 Overall, when the TRPV1 channel is 
activated, sodium (Na+) and Ca2+ channels open leading to ion 
influx, initiation of depolarization, additional Ca2+ entry through 
voltage-gated Ca2+ channels, propagation of action potential into 
the central nervous system (CNS) and finally, different sensations 
such as stinging, burning, itching or a feeling of warmth.9,10 Xin 
et al. (2005) reported the involvement of the TRPV1 channel in 
Ca2+ release from intracellular stores due to its expression in the 
endoplasmic reticulum (ER), sarcoplasmic reticulum and mem-
brane.11 Accordingly, the TRPV1 channel contributes to the in-
crease in Ca2+ concentration through four sources including the 
TRPV1 channel in the plasma membrane and ER; Ca2+-induced 
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Ca2+ release and store-operated Ca2+ entry.12 On the other hand, 
Ferrini et al. (2007) reported that the administration of capsaicin 
to the spinal lamina II neurons causes SP release that excites in-
hibitory neurons in laminae I, III and IV, leading to an increase 
in the release of inhibitory neurotransmitters (e.g. gamma-amino 
butyric acid (GABA)/glycine) in mice.13 Thus, capsaicin enhances 
the inhibitory neurotransmission as a parallel alternative pathway 
to glutamate in the transfer of nociceptive signals.13

TRPV1 expression
It is well documented that the TRPV1 channel is highly expressed 
in DRGs, trigeminal ganglia (TGs) and the spinal cord.1 Also, it is 
found in the striatum, amygdala, thalamus, microglia, astrocytes 
and other regions in the CNS as well as non-neuronal tissues such 
as hair follicles, mast cells, smooth muscles, keratinocytes, liver, 
tongue, oral cavity, bladder, kidneys, lungs, spleen and cochlea.10,14 
Related research shows that low levels of the TRPV1 channel are 
expressed in the entorhinal cortex, olfactory bulb, hippocampus, 
periaqueductal gray (PAG) and other regions.15 Moreover, the 
TRPV1 channel is widely present in multiple peripheral tissues/
systems including the vasculature, gastrointestinal (GI) tract, uri-
nary bladder, and immune system.16–18

TRPV1 in health
Appealing evidence shows that the TRPV1 channel plays key roles 
in thermosensation, oral sensation, proteasome activity, modula-
tion of autophagy, energy homeostasis, muscle physiology, GI mo-
tility, and the release of inflammatory mediators as well as crosstalk 
between the immune system and sensory nervous system.1,18–24 In 
addition, the TRPV1 channel is involved in the modulation of syn-
aptic transmission through pre- and post-synaptic mechanisms and 
microglia-to-neuron communication.10 To elaborate, the TRPV1 

channel modulates glutamatergic and GABAergic transmission 
and causes changes in neuronal firing.25,26 Thus, it has a role in 
brain plasticity and development.10,27 Moreover, numerous studies 
have shown that the TRPV1 channel is implicated in the regulation 
of long-term potentiation of excitatory postsynaptic potentials in 
the hippocampus which is responsible for learning and memory.28

In the urinary bladder, the TRPV1 channel is involved in the 
micturition reflex, regulation of the contractility in muscle cells, 
blood flow and nerve excitability.17,29 In addition, the TRPV1 
channel is involved in the regulation of vascular tone and blood 
pressure due to its wide expression in smooth muscle cells, perivas-
cular nerves, and endothelial cells of the cardiac system.30 Moreo-
ver, previous studies point to the vasodilatory effect of the TRPV1 
channel and its role in the stimulation of mucus secretion in the 
gut.31 In the stomach and duodenum, the TRPV1 channel takes 
part in the maintenance of tissue integrity in addition to its protec-
tive role against aggressive compounds.32 Also, the TRPV1 chan-
nel plays a role in the control of motor function in the GI tract.10 
Also, the TRPV1 channel is a key component in the fertility out-
come in men.33 In other contexts, it is increasingly recognized that 
the channel is a fundamental contributor to the healing of differ-
ent wounds as reviewed by Bagood and Isseroff (2021) and other 
researchers.34 The TRPV1 channel acts as a mechanosensor in the 
lens and contributes to the regulation of water and ion transport to 
restore lens volume and maintain internal lens hydrostatic pressure 
gradient.35

Figure 2 shows body systems that have TRPV1 expression.

TRPV1 in disease
As the TRPV1 channel is implicated in several physiological pro-
cesses, many disorders have been associated with alterations in the 
function and/or expression of the TRPV1 channel. Close attention 

Fig. 1. Transient receptor potential vanilloid 1 (TRPV1) structure. The TRPV1 channel possesses a tetrameric structure with 6 transmembrane domains and 
a pore-forming hydrophobic stretch linking segment 5 (S5) and S6. The channel has an unusual characteristic in which it has cytosolic intracellular C and N 
termini. When the TRPV1 channel is activated, sodium (Na+) and calcium (Ca2+) channels open leading to ion influx, initiation of depolarization, additional 
Ca2+ entry through voltage-gated Ca2+ channels, propagation of action potential into the central nervous system (CNS) and finally, different sensations. H+ 
refers to protons.
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is currently paid to the involvement of the TRPV1 channel in dis-
eases, pointing to its importance as a promising therapeutic target. 
This review highlights up to date findings regarding the involve-
ment of the TRPV1 channel in diseases.

TRPV1 and dysregulation of temperature
It is widely accepted that TRPV1 knockout mice show altered 
responses to heat.36,37 The animals exhibited little thermal hyper-
sensitivity during inflammation and impairment in painful heat 
detection.37 In another study, it was revealed that the sensitivity 
to noxious heat was attenuated after silencing the TRPV1 gene by 
short hairpin ribonucleic acid.38 Other research implicated that the 
expression of the TRPV1 channel accounted for the activity of hy-
pothalamus in thermoregulation.39 Importantly, the use of several 
TRPV1 antagonists was associated with side effects such as hyper-
thermia and accidental burns (e.g. AMG0347) or hypothermia (e.g. 
1165901) as a further indication to the link between TRPV1 and 
thermoregulation.40,41

TRPV1 and pain
Many studies have depicted that the TRPV1 channel is expressed in 
sensory neurons.1 In more detail, the TRPV1 channel is expressed 
in the unmyelinated C-fibers and the myelinated Aδ-fibers.1 Thus, 

the TRPV1 channel is involved in the nociception of mechanical, 
thermal, and chemical stimuli during pain.42 In detail, it has been 
long recognized that the TRPV1 channel plays a fundamental role 
in inflammatory and neuropathic types of pain.43 By virtue of  this 
fact, mice that lack the TRPV1 channel display a significant de-
crease in pain sensation.37 Additionally, emerging evidence shows 
that TRPV1 expression changes after nerve injury.44 In addition, it 
was revealed that the alterations in TRPV1 expression and function 
were major contributors to diabetes-induced variations in thermal 
pain.45 Furthermore, cumulative evidence confirms that the TRPV1 
channel is implicated in inflammatory pain through the activation 
of kinases (e.g. PKA and PKC) and an increase in TRPV1 activ-
ity by many inflammatory mediators.46 Additionally, the TRPV1 
channel is a major contributor to cases of neuropathic pain such as 
chemotherapy-induced peripheral neuropathy.47 In this regard, one 
study has shown that paclitaxel causes TRPV1 sensitization through 
the release of mast cell tryptase that causes activation for the pro-
tease-activated receptor 2 (PAR2) and other kinases.48 On the other 
hand, abundant evidence shows that the TRPV1 channel contributes 
to fibromyalgia which is a chronic pain disorder characterized by 
fatigue, widespread body pain, and mental health problems.49,50 Im-
portantly, the TRPV1 channel, among other pain receptors, has been 
implicated in different types of pain during coronavirus disease 2019 
(COVID-19) and after recovery (post-COVID-19).51,52

Fig. 2. Body systems that have transient receptor potential vanilloid 1 (TRPV1) expression. GI, gastrointestinal; S, segment.
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Since the TRPV1 channel is involved in the nociception of 
different stimuli, it is widely considered a promising target for 
pain control.42 Notably, despite the fact that the first exposure to 
TRPV1 activators causes pain, repeated exposure to these activa-
tors inhibits pain perception due to TRPV1 desensitization, thus 
representing a unique form of analgesia.9

TRPV1 and inflammation
It is well known that tissue injury is associated with inflamma-
tion and the release of multiple inflammatory mediators such as 
PGE2 NGF, and bradykinin as well as protons that are responsible 
for tissue acidosis indicating that there is interplay between the 
TRPV1 channel and inflammation.53 Many inflammatory media-
tors sensitize the TRPV1 channel by lowering its threshold lead-
ing to its activation at body temperature by several mechanisms 
that differ according to the types of nociceptors and inflammatory 
mediators.43,54 These mediators have significant effects on the 
TRPV1 channel. Also, growing evidence demonstrates that in-
flammation promotes the sensitized state of the TRPV1 channel 
through increased activity of PKC and PKA. Thereby, the TRPV1 
channel is considered a key detector for brain inflammation and 
autoimmune encephalitis.27,55 Besides, the literature supports the 
fact that inflammation causes TRPV1 anterograde transport from 
the cell body to the periphery via the sciatic nerve.56 Evidently, 
inflammation-induced reactive oxygen species (ROS) increased 
the translation of TRPV1 mRNA and caused anterograde transport 
of the TRPV1 protein to the periphery.57 In this context, it has been 
found that the trafficking and expression of the TRPV1 channel 
change at the transcriptional, translational, and post-translational 
levels during nerve injury and inflammation.58 Moreover, there 
is growing evidence indicating that the recruitment of vesicular 
TRPV1 pools to the membrane and the surface insertion of the 
TRPV1 channel onto the surface of DRGs are complementary 
mechanisms required for the enhancement of TRPV1 function-
ality by some inflammatory mediators such as NGF, insulin-like 
growth factor 1 and adenosine triphosphate (ATP).54 Supporting 
this contention, earlier reports showed that numerous inflamma-
tory mediators lower the threshold of TRPV1 activation via phos-
phorylation.4 Likewise, there is substantial evidence revealing 
that NGF produced after inflammation and/or tissue injury has 
an impact on a regulatory region located upstream of the TRPV1 
gene and hence evokes TRPV1 expression in nociceptors, partly 
through transcription.59 Additionally, it was demonstrated that the 
administration of TRPV1 antagonists inhibits ovalbumin-induced 
coughing in guinea pigs, indicating that the TRPV1 channel plays 
a crucial role in inflammatory coughing.60 Additionally, Orliac et 
al. (2007) proposed that the effect of anandamide during endotoxic 
shock (a case of severe inflammatory response) was enhanced by 
TRPV1 overexpression in rats.61

TRPV1 and cancer
Research evidence has proved the involvement of the TRPV1 
channel in tumorigenesis (cell proliferation, death, and metasta-
sis) as the channel contributes to cell division.62,63 The effects and 
mechanisms of using various TRPV1 agonists/antagonists on dif-
ferent cancer cells were reviewed by Li et al. (2021).63 Accumu-
lating knowledge shows that the anti-tumor potential of capsaicin 
is demonstrated in different cancer cell lines via one or more of 
the following mechanisms: suppressing angiogenesis, increasing 
apoptosis, changing different signaling pathways or inhibiting pro-
liferation and motility of cells.63,64 The fact that TRPV1 activa-
tion leads to Ca2+ influx indicates that there is interplay between 

the TRPV1 channel and intracellular Ca2+ concentration, which is 
needed in many processes such as cell migration, cytotoxicity and 
ultimately cell death.65,66  In this regard, one study demonstrated 
that the administration of the TRPV1 agonist, RTX, induced cell 
death in pancreatic cancer cells.66 More precisely, it was revealed 
that the TRPV1 channel contributes to the proliferation of different 
human cancer cell lines and tumors such as osteosarcoma, colo-
rectal cancer cells, dermal cancer cells, pancreatic cancer cells, 
urothelial cancer cells, renal cancer cells, hepatocellular carcino-
ma, nasopharyngeal carcinoma, breast carcinoma, neuroblastoma, 
and melanoma.63 Meanwhile, the channel has an impact on the 
apoptosis/necrosis of breast carcinoma, osteosarcoma, lung cancer 
cells, gastric cells, oral squamous cell carcinoma, nasopharyngeal 
carcinoma, uterine cervix cancer, endometrial cancer, cutaneous 
melanoma, cervical carcinoma and bladder cancer cells.63 Addi-
tionally, evidence suggests that the TRPV1 channel has a role, via 
different mechanisms, in cancer cell metastasis and invasiveness 
in different cells such as colorectal cancer cells, pancreatic cancer 
cells, urothelial cells, papillary thyroid carcinoma, dermal cancer 
cells, lung cancer cells, cervix adenocarcinoma, hepatoblastoma, 
nasopharyngeal carcinoma, neuroblastoma and melanoma.63 In 
addition, the TRPV1 channel plays a role in bone cancer due to 
its activation by tissue acidosis mediated by osteoclasts.67 In the 
oral cavity, TRPV1 expression was detected in the cell carcinoma 
of the human tongue.68 Also, in cultured DRGs, it was found that 
treating the animals with the anticancer drugs oxaliplatin and cispl-
atin caused upregulation for TRPV1 mRNA.69 Besides, a consider-
able body of work shows that the TRPV1 channel is implicated in 
several hematological malignancies due to its expression in mac-
rophages, monocytes, and dendritic cells.70 Moreover, previous 
research has shown that there is a link between TRPV1 expression 
and the efficiency of chemotherapy as well as radiotherapy.63 No-
tably, caution has been raised in some studies regarding the asso-
ciation between the long term use of capsaicin and the emergence 
of cancer in animals.71

TRPV1 and psychiatric/neurological disorders
It is widely recognized that the TRPV1 channel is involved in 
several psychiatric and neurological disorders such as anxiety, 
conditioned fear, depression, drug-addiction disorders, epilepsy 
and Alzheimer’s disease.10,35,65,72 In more detail, earlier reports 
revealed that the TRPV1 channel was expressed in the hippocam-
pus and cortex of patients who had epilepsy.73 Additionally, it was 
found that the administration of the TRPV1 antagonist capsaze-
pine suppressed seizures in genetically epilepsy-prone animals.74 
Remarkably, multiple studies have demonstrated that the TRPV1 
channel promotes the migration of astrocytes and release of pro-
inflammatory cytokines from astrocytes into the nearby neurons to 
maintain epileptogenesis.75 In the substantia nigra, it is evident that 
the activation of astrocytic TRPV1 prevents the degeneration of 
dopaminergic neurons in a model of Parkinson’s disease in rats.76 
Furthermore, You et al. (2012) reported that TRPV1 knockout 
mice exhibited antidepressant behavior.77 Also, TRPV1 activation 
reversed memory impairment and hippocampal damage caused 
by the cytotoxic effects of Amyloid-β peptide.65 Additional lines 
of evidence documented the potential role for the TRPV1 chan-
nel in schizophrenia.78 Importantly, it merits consideration that the 
TRPV1 channel has been detected in brain areas that are involved 
in the control of stress such as the hippocampus, locus coeruleus, 
medial prefrontal cortex, hypothalamus, and dorsolateral periaque-
ductal gray (dlPAG).79 In this regard, the TRPV1 channel in dlPAG 
has been implicated in the attenuation of cannabidiol (CBD)-me-
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diated anxiolysis.79

TRPV1 and disorders of the auditory system
In the study of Takumida et al. (2005), the authors documented 
that the TRPV1 channel was detected in the inner ear of guinea 
pigs; more specifically, in hair cells and supporting cells of the 
organ of Corti; spiral ganglia of the cochlea; and the vestibular 
end organs.80 Further, multiple studies showed that the cochlear 
expression of the TRPV1 channel was involved in drug-induced 
cochleotoxicity (hearing loss) during systemic inflammation.81 
Additionally, TRPV1 expression was up-regulated in the vestibu-
lar and spiral ganglia in the inner ear of mice after kanamycin 
challenge.82 Besides, earlier studies shed new light on the role 
of the TRPV1 channel in cisplatin ototoxicity as its absence pro-
vided protection against hearing loss.83 In addition, a significant 
amount of research has shown that several cochlear stressors (e.g. 
noise and ototoxic drugs) affect the TRPV1 channel indicating 
the role of this channel in the regulation of cytoprotection and/
or cell death pathways.83 Consistent with these findings, it was 
found that inhibiting inflammation or oxidative stress decreased 
TRPV1 expression, modulated the apoptotic and inflammatory 
signals and provided protection against cochlear damage and 
hearing loss.83

TRPV1 and disorders of the ocular system
It is well documented that the TRPV1 channel is expressed in dif-
ferent regions of the lens including the epithelium, outer cortex 
and inner cortex.35,84 In vivo, TRPV1 absence was associated with 
impairment in the healing of the epithelium in debrided corneal 
defects in rodents.84 Furthermore, a considerable body of work has 
revealed that TRPV1 activation by mechanical injury causes cy-
toskeletal rearrangement, an increase in Ca2+ concentration, and 
enhances the migration of isolated retinal astrocytes.85 In ganglion 
cells, it has been published that the increase in intraocular pres-
sure augments TRPV1 expression, which is involved in protecting 
ganglion cells from apoptosis.86 Additionally, the application of 
capsaicin to the corneal epithelium causes TRPV1 activation, an 
increase in intracellular Ca2+ concentration, the release of inflam-
matory mediators, and protection against infection by microorgan-
isms.87

TRPV1 and anosmia/ageusia
People experience a burning sensation on their tongues when eat-
ing chili peppers. Thus, multiple studies have highlighted the in-
volvement of the TRPV1 channel in taste perception.

Remarkably, the TRPV1 channel is expressed in neurons in-
nervating the oral cavity.88,89 There are several pieces of evidence 
indicating that the TRPV1 channel responds to a number of sub-
stances (e.g. allicin, capsaicin, alcohol and gingerol) and modi-
fies salt stimuli.90 Also, appealing evidence shows that a TRPV1 
channel variant is expressed in the epithelial cells and taste buds 
of the tongue.89 Besides, it has been reported that TRPV1 poly-
morphisms are linked to alterations in the sensitivity to the taste 
of salts.91 Notably, earlier research mentions that capsaicin can 
decrease sucrose preference and inhibit voltage-dependent Na+ 
channels in taste cells in TRPV1 knockout mice.91 In this context, 
Hu et al. (2016) reported that the TRPV1 channel was involved 
in rimonabant-induced olfactory discrimination deficit and that 
the impaired olfactory discrimination was rescued by the TRPV1 
antagonist capsazepine.92 Further, the TRPV1 channel seems to 
be linked to the anosmia/ageusia symptoms in COVID-19 pa-
tients.51,52

TRPV1 and infections
Several reports demonstrated that the TRPV1 channel plays im-
portant roles in bacterial, fungal and viral infections.51,52,93–95 
In more detail, Maruyama et al. (2017) reported that the topical 
Candida albicans skin infection stimulated the release of calci-
tonin gene-related peptide (CGRP) in a TRPV1 dependent manner 
during bone infection.93 Another study showed the beneficial ef-
fects of TRPV1 ablation on inducing immunosuppression against 
Streptococcus pyogenes in the skin.94 Likewise, the TRPV1 chan-
nel has been implicated in the anti-inflammatory and immunosup-
pressive responses in animals infected with Staphyloccocus aureus 
in the skin and lung.95,96 In a model of sepsis (cecal ligation and 
puncture), it was revealed that the animals that are deficient in the 
TRPV1 channel suffered from severe symptoms such as decreased 
phagocytosis in macrophages, increased apoptosis of peritoneal 
mononuclear cells, increased levels of inflammatory mediators, 
decreased levels of ROS, and reduced bacterial clearance.21 In fact, 
the link between the TRPV1 channel, Ca2+ concentration and ROS 
provides evidence for the involvement of the TRPV1 channel in 
viral infections.97 More precisely, an accumulation of knowledge 
showed that Ca2+ entry into the cells is of key importance to the vi-
ral lifecycle at several steps including its entry, replication, assem-
bly, and release.98 Further, it has been reported that there is inter-
play between the increase in intracellular Ca2+ and ROS levels in 
mitochondria, which is crucial for the lifecycle of many viruses.99

As shown from previous studies, the TRPV1 channel is one of 
the receptors that provide favorable environments for viruses in-
cluding severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2).51,52 The wide expression of the TRPV1 channel in tissues 
that were frequently infected by SARS-CoV-2 suggests that the 
channel plays a crucial role in COVID-19, one of the world’s worst 
pandemics in the current century. In the review of Jaffal and Abbas 
(2021), the authors summarized the studies that demonstrated a 
correlation between the TRPV1 channel and several symptoms of 
COVID-19 including fever, pain, myalgia, inflammation, cough, 
headache, pulmonary edema, anosmia, ageusia, as well as prob-
lems of the GI and cardiovascular systems.51 Also, the TRPV1 
channel can be implicated in other manifestations of COVID-19 
disease such as anxiety as well as visual, renal, and hepatic prob-
lems.51 Figure 3 shows a representation of a SARS-CoV-2-induced 
cytokine storm,52 which is considered the leading cause of death 
in COVID-19 patients. The activation of the TRPV1 channel in 
the peripheral nervous system (PNS) and CNS contributes to Ca2+ 
influx and the release of neuropeptides that induce liberation of 
more inflammatory mediators. These mediators cause sensitization 
of more TRPV1 channels, among others leading to excessive stim-
ulation and providing a favorable environment for SARS-Cov-2. 
In summary, the inflammatory cytokine storm produces a loop of 
amplified release of mediators at different levels leading to more 
adverse outcomes.

TRPV1 and disorders of the reproductive system
It is well known that the TRPV1 channel is expressed in the head, 
midpiece, and tail of sperm and is involved in the regulation of 
acrosomal reaction and sperm capacitation.33,100 As such, there 
is correlation between TRPV1 expression and the fecundity po-
tential of sperm.33 In this context, earlier reports have shown that 
the TRPV1 channel is downregulated in the spermatozoa of idi-
opathic infertile men, subfertile men, and normozoospermic infer-
tile males.33 Further, in TRPV1 knockout mice, it was found that 
the testes of mice were more susceptible to oxidative stress, tes-
ticular damage, and dysfunctional sperm development.101 It was 
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also found that vulvodynia (a condition of pain in the opening of 
vagina) is linked to more epithelial innervation when accompanied 
by more TRPV1 expression in vulva.102 Besides this, the TRPV1 
channel contributes to the sensory symptoms experienced by pa-
tients who suffer from hyperalgesia, allodynia, and a burning sen-
sation in the vulvar vestibulus region.102

TRPV1 and disorders of the respiratory system
A remarkable amount of literature demonstrates that the TRPV1 
channel is expressed in several regions in the upper and lower res-
piratory tracts such as the vascular endothelial cells, submucosal 
gland cells, smooth muscle cells, cholinergic neurons, inflamma-
tory cells, laryngeal epithelial cells, blood vessels, fibroblast cells, 
T cells, and the airway epithelium.103,104 Also, the TRPV1 chan-
nel is expressed in neurons of the vagal nerve that innervate the 
airways.38 Moreover, previous studies highlighted that TRPV1 an-
tagonism decreased airway hyperresponsiveness in guinea pigs and 
exerted anti-tussive effects in a capsaicin-induced cough model of 
guinea pigs.105,106 In line with the involvement of the TRPV1 chan-
nel in respiratory disorders, it was found that TRPV1 expression 
increased in patients suffering from chronic obstructive pulmonary 
disease (COPD) and chronic cough.107,108 In addition, the TRPV1 
channel was critical for the effect of NGF (when administered via 
inhalation or intracerebroventricular (ICV) injection) in enhancing 

cough and airway obstruction in guinea pigs.109,110 Moreover, ac-
cumulated data suggest that the activation of the TRPV1 channel 
on respiratory effector cells can lead to tracheal mucosal edema, 
bronchoconstriction, protein secretion and inflammatory cell 
chemotaxis.109,111 Interestingly, earlier reports have shown a rela-
tionship between TRPV1 single nucleotide polymorphisms (SNPs) 
and protective effects against wheezing in patients who suffer from 
asthma.112 Additionally, a recent study documented the increase in 
TRPV1 expression in rhinovirus that contributes to asthma exacer-
bations.113 In this regard, several studies have shown that capsaicin 
nasal spray is useful in the treatment of idiopathic rhinitis.114

TRPV1 and obesity
Previous reports have demonstrated that the TRPV1 channel is ex-
pressed in adipocytes and plays a key role in the regulation of met-
abolic processes that are related to obesity.115,116 Capsaicin pro-
motes weight loss by increasing the sympathetic nervous system 
activity, decreasing appetite as well as increasing energy expendi-
ture, fat oxidation, insulin and leptin resistance.117,118 Furthermore, 
capsaicin improves endurance capacity and energy metabolism in 
skeletal muscles.119

The findings of a recent meta-analysis of clinical trials showed 
that the daily consumption of capsiate (a non-pungent vanilloid) 
or capsaicin increased thermogenesis and decreased appetite, and 

Fig. 3. Representative sketch for the cytokine storm in Coronavirus disease 2019 (COVID-19) and the involvement of the transient receptor potential 
vanilloid 1 (TRPV1) channel (Modified from Jaffal, 2021).52 Severe acute respiratory syndrome coronavirus (SARS-CoV-2) can cross the blood brain barrier 
(BBB) and cause more devastating effects. During COVID-19, the activation of the TRPV1 channel in the peripheral nervous system (PNS) and central nervous 
system (CNS) contributes to calcium (Ca2+) influx and the release of neuropeptides that induce the liberation of more inflammatory mediators. These me-
diators cause sensitization of more TRPV1 channels, among others leading to excessive stimulation and providing a favorable environment for SARS-Cov-2. 
DRGs, dorsal root ganglia.
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can thus be useful in weight management.120 Further, it has been 
published that dietary capsaicin and capsinoids increase energy ex-
penditure and thermogenesis mediated by an increase in brown adi-
pose cells and a decrease in white adipogenesis.115 It is evident that 
the administration of low-dose dietary capsaicin improved insulin 
sensitivity, increased fat oxidation, decreased body fat and improved 
the functions of liver.116 Despite that, there are conflicting results 
about the role of the TRPV1 channel in weight management due to 
the risk of developing myocardial infarction.121 Of note, the effects 
of capsaicin depend on the administered dose and duration of its ap-
plication. Further research is needed in this regard.

TRPV1 and disorders of the GI tract
In the GI tract, the TRPV1 channel is expressed in the afferent 
neurons (vagal and spinal) in the esophagus, jejunum, stomach, 
rectum, colon as well as the small intestine.16,119,122 In fact, ac-
cumulated evidence supports the findings that TRPV1-labeled 
nerve fibers are distributed in each layer of the GI tract includ-
ing submucosa, mucosa, muscle, and myenteric plexus.123 Thus, 
the TRPV1 channel is implicated in the cases of irritable bowel 
syndrome (IBS), neurogenic pancreatitis, and ileus.123 It is well 
established that CGRP released after TRPV1 activation in primary 
nociceptive nerves leads to a strong inhibitory effect on gastric 
acid induced irritation.124 Additionally, many substances (e.g. 
tachykinins) are released when the TRPV1 channel is activated 
causing gastric motility and acceleration for gastric emptying.125 
Furthermore, it has been illustrated that ulcer formation in rats 
is suppressed by the injection of low dose capsaicin and that the 
perfusion of capsaicin into the stomach of rats can inhibit gastric 
mucosal injury.126,127 Evidently, several studies have been pub-
lished about the effects of capsaicin on reducing the symptoms of 
functional dyspepsia caused by duodenal and gastric dysfunction, 
reducing upper abdominal symptoms as well as increasing GI dys-
function, leading to IBS-related symptoms.19 Interestingly, TRPV1 
expression increased in a rat model of chronic pancreatitis and in 
patients of ulcerative colitis and Crohn’s disease.128,129 Further, it 
is increasingly apparent that the channel is involved in gastric pain 
hypersensitivity and gastroesophageal reflux disease.123 Moreover, 
it was revealed that capsaicin could improve liver function in a 
mouse model of hepatic failure.130 The fact that TRPV1 expression 
has been found to increase in oesophagitis, colonic inflammation, 
acute haemorrhoidal disease, and distal colitis is further evidence 
of the involvement of the TRPV1 channel in the disorders of the 
GI tract.8

TRPV1 and disorders of the cardiovascular system
Previous studies have confirmed that the TRPV1 channel is dense-
ly expressed in the sensory neurons that innervate the ventricles, 
endothelial cells, epicardial surface of the heart, myocardium, car-
diomyocytes, the adventitia of the ascending aorta, aortic arch, and 
the vascular smooth muscle cells.131 Moreover, TRPV1 expression 
is detected in large arteries, aorta and carotid arteries.132 Following 
this, other studies have shown that the TRPV1 channel plays a role 
in sensing blood pressure fluctuations.133 Furthermore, it has been 
found that TRPV1 activation mediates the hypotensive action and 
is implicated in myogenic vasoconstriction in the Bayliss reflex in 
the resistance arteries.10,134 In this regard, previous studies showed 
that the administration of capsaicin increased coronary flow and 
decreased left ventricular end diastolic pressure and infarct size 
in wild type mice.135 In addition, it has been found that TRPV1 
activation can alleviate atherosclerosis induced by a high-fat diet 
in mice through cellular cholesterol cleavage.136 Specifically, di-

etary capsaicin decreased atherosclerosis by regulating lipid me-
tabolism and decreasing endothelial dysfunction.136,137 According 
to Harper et al. (2010), TRPV1 receptors that exist on platelets 
can promote inflammatory mediators leading to platelet activation 
and the formation of atherosclerosis.138 The TRPV1 channel, be-
ing expressed in the perivascular nerves, also plays a crucial role 
in cardioprotection by stimulating the release of potent neuropep-
tides such as CGRP and SP that cause vasodilation or vasocon-
striction.138–140 Moreover, it has been documented that there is as-
sociation between decreased expression of the TRPV1 channel in 
metabolic syndrome and increased ischemic reperfusion injury in 
isolated mice hearts.141 Further, emerging evidence indicates that 
the TRPV1 channel mediates relaxation of smooth muscle cells 
in the endothelium.142 However, previous studies have implicated 
that high consumption of capsaicin can cause myocardial infarc-
tion and vasospasm.143 In this regard, Song et al. (2017) docu-
mented that TRPV1 activation is responsible for the contraction 
of smooth muscle cells in pulmonary artery, vasoconstriction and 
the pathogenesis of idiopathic pulmonary arterial hypertension.144

TRPV1 and diabetes
A considerable body of work shows that nerve fibers that express 
the TRPV1 channel innervate Langerhans islets in the pancreas.145 
Also, previous research has confirmed an alteration in the activity 
and/or expression of the TRPV1 channel in insulin resistance.118 
In the long-term diabetic microenvironment, earlier studies dem-
onstrated that TRPV1 desensitization in DRGs decreased TRPV1 
activity and contributed to peripheral diabetic neuropathy.146 Fur-
thermore, the injection of capsaicin attenuated hyperglycaemia in 
Zucker diabetic fatty animals which is a model of human type 2 
diabetes mellitus.145 In this sense, TRPV1 knockout mice exhib-
ited impairment in glucose metabolism manifested by a decrease 
in glucose-induced insulin secretion.147 Importantly, it has been 
found that the TRPV1 channel is a modulator for clock gene oscil-
lations in black adipose tissue (BAT) and is involved in the regula-
tion of hepatic functions and glucose metabolism.148,149 Besides, 
earlier studies revealed that hepatic glycogen storage was com-
promised in TRPV1 knockout mice due to impairment in glucose 
homeostasis.149 Further, it was shown that the livers of TRPV1 
knockout mice exhibited changes in proteomics and a decrease in 
glycogen storage in addition to an enhancement in glycogenolysis, 
gluconeogenesis, and the levels of inflammatory parameters.149

TRPV1 and disorders of the cutaneous system
The burning feeling of capsaicin in the skin was discovered by Ho-
gyes in 1878 before the discovery of the TRPV1 channel.33 Since 
then, several studies have been conducted to unravel the effects and 
mechanisms of the TRPV1 channel on different systems including 
the cutaneous system. In the skin, it is evident that the TRPV1 
channel presents in epidermal keratinocytes, mast cells, epithelial 
cells of hair follicles, blood vessels, eccrine sweat glands, keratino-
cytes, nociceptors, immune cells, sebocytes, fibroblasts, and mel-
anocytes.33,150 Interestingly, it has been documented that TRPV1 
positive nociceptors in hair follicles play a role in the proliferation 
and migration of stem cells to improve healing.151 Many people 
have used capsaicin to treat psoriasis, atopic dermatitis, and aller-
gic contact dermatitis.152–154 Also, the channel plays an important 
role in the healing of wounds in different models such as incision 
wounds, tape striping, burn wounds, corneal wounds and ultravio-
let B wounds.33 Therapeutically, it has been found that honokiol (a 
natural compound extracted from magnolia plants) is effective in 
treating third degree burns by decreasing the mRNA and protein 
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expression of TRPV1.155 Moreover, in one study, mice lacking the 
TRPV1 gene showed reduction in histamine-induced scratching 
and itching sensation compared to wild-type mice.156 Regarding 
hair growth, Bodo et al. (2005) suggested that the TRPV1 channel 
can influence human hair growth and that TRPV1-based therapy 
can be used for the treatment of hirsutism (unwanted hair growth), 
effluvium, and alopecia (hair loss).157

TRPV1 and headache
Several studies have unraveled the role of the TRPV1 channel in 
migraines. It is well known that one of the factors that contribute 
to migraines is the release of neuropeptides through the activa-
tion of trigeminal afferents in the cranial vasculature (trigemino-
vascular system).158 Due to the expression of the TRPV1 channel 
in TGs and dural nerves, it is well documented that this channel 
is implicated in headache and migraine mechanisms.159 In this 
regard, previous studies have shown that the anti-migraine drug 
sumatriptan alleviates headache in a TRPV1 dependent manner.159 
Other pieces of research elucidated the mechanisms of botulinum 
toxin A (BoNTA) in treating chronic migraine. The studies shed 
new light on the inhibition of TRPV1 trafficking to the plasma 
membrane in TGs and the decrease in capsaicin-induced pain af-
ter BoNTA treatment.160,161 Moreover, many studies used TRPV1 
agonists and antagonists to probe meningeal afferents and reported 
the effectiveness of TRPV1 agonists, rather than antagonists, in 
treating migraines.162,163 In this regard, the repeated administra-
tion of intranasal capsaicin to chronic migraine patients resulted 
in 50–80% amelioration of migraine attack due to TRPV1 desen-
sitization.163 Likewise, it was found that the use of an intranasal 
TRPV1 agonist (civamide) decreased the frequency of headache 
attacks in 72.7% of patients and caused absence of pain in 33% 
of patients.164 Importantly, it has been revealed that neurogenic 
vascular effects of the TRPV1 channel are implicated in migraine 
pathophysiology through CGRP release and dural vasodilation.158 
Widely popular, pro-inflammatory mediators stimulate trigeminal 
nociceptors possibly via the TRPV1 channel highlighting the role 
of the TRPV1 channel in migraines and the role of non-steroidal 
anti-inflammatory drugs (NSAIDs) in treating them.165,166 Of rel-
evance, it was found that the transient receptor potential ankyrin 
1 (TRPA1) channel requires co-activation of the TRPV1 channel 
to initiate afferent signaling from the meninges and that ethanol 
triggers migraine attacks through release of CGRP in a TRPV1-
dependent manner.167–169

TRPV1 and disorders of the urinary system
In the urinary tract, the TRPV1 channel is expressed in sensory 
nerve fibers, smooth muscles and the urothelium.169 Importantly, 
the expression of the TRPV1 channel has been correlated with the 
severity of inflammation in interstitial cystitis or bladder pain syn-
drome.170 According to clinical studies, capsaicin is recommended 
for the treatment of neurogenic bladder hyperreflexia as it causes 
a decrease in bladder capacity, pressure threshold for micturition 
and the patients’ desire to void.17 Also, the TRPV1 channel is ex-
pressed in the renal pelvis and contributes to the maintenance of 
diuresis, natriuresis, water and Na+ homeostasis.171 Additionally, 
previous findings have shown that the TRPV1 channel responds 
to many chemicals (e.g. allicin, alcohol, capsaicin, and gingerol) 
that are known to modify salt stimuli.172 In this context, capsaicin 
has been effective in treating incontinence in people suffering from 
dysfunctional micturition reflex.40 Additionally, recent preclinical 
data revealed that TRPV1 activators improved the outcome of is-
chemic acute kidney injury.173

TRPV1 and disorders of the muscular system
It is well established that the TRPV1 channel is expressed in 
muscle afferents and is involved in muscle nociception and mus-
cle pain conditions.8 Moreover, TRPV1 mutations are associated 
with muscle disorders such as exertional heat stroke and malig-
nant hyperthermia.24 Additionally, several studies have shown that 
TRPV1 activation leads to Ca2+ release, membrane excitability, 
neurotransmitter release, and muscle contraction.174 Supporting 
this contention, it has been revealed that the upregulation of nitric 
oxide and peroxynitrite in overloaded muscle activates the TRPV1 
channel.175 Also, TRPV1 knockout mice exhibited stronger mus-
cles with improvement in neuromuscular function compared to 
wildtype counterparts.24 In frogs, it was documented that TRPV1 
activation decreased the tension of fast skeletal muscle fibers caus-
ing a change in muscle activity.176

TRPV1 and disorders of the skeletal system
It has been long recognized that capsaicin attenuates key parameters 
that are responsible for symptoms of adjuvant arthritis.177 Also, there 
is mounting evidence that the TRPV1 channel is involved in bone re-
modeling and bone diseases such as osteoporosis which is character-
ized by a decrease in bone density, increase in bone resorption, and 
fragile bones.178,179 In this context, Alexander et al. (2013) reported 
the up-regulation of the TRPV1 channel in osteoclasts obtained 
from osteoporotic patients.178 In addition, it was found that TRPV1 
genetic deletion, inhibition, or desensitization in mice decreased the 
activity of osteoclasts in vitro and inhibited ovariectomy-induced 
bone loss as well as osteoporosis in vivo.179 Moreover, previous 
studies documented that capsazepine inhibited the differentiation of 
osteoclasts and osteoblasts in vitro as well as ovariectomy-induced 
bone loss in vivo.180 Accordingly, it is strongly suggested that the 
TRPV1 channel is involved in several bone problems.

Pharmacological agents that interact with the TRPV1 channel
As the TRPV1 channel is involved in multiple biological and path-
ological processes, several pharmacological agents that target this 
channel have been synthesized and it is increasingly recognized 
that there are multiple endogenous and exogenous agonists for the 
TRPV1 channel.181 Capsaicin is an exogenous TRPV1 agonist ex-
tracted from the plant Capsicum annuum L.182 The agonistic action 
of capsaicin has been exploited therapeutically by synthesizing 
patches that include high doses of capsaicin, leading to TRPV1 de-
sensitization.143 Remarkably, accumulating knowledge illustrates 
that capsaicin creams and patches attenuate pain due to TRPV1 de-
sensitization on local cutaneous nociceptors and a loss of respon-
siveness to many sensory stimuli.9 Accordingly, capsaicin (8% 
patch; Qutenza™) was approved by the United States Food and 
Drug Administration in 2009 for the treatment of postherpetic neu-
ralgia-induced neuropathic pain.143 Also, it has been revealed that 
capsaicin, formulated as a topical cream or a transdermal patch, 
is effective for the management of pain in minor muscle strains 
or cramps and joint pain.143 On the other hand, many endogenous 
agonists (also called endovanilloids) for the TRPV1 channel have 
been identified including anandamide, N-oleoylethanolamine, N-
Arachidonoyl-dopamine, N-oleoyl dopamine, lysophosphatidic 
acid, 20-hydroxyeicosatetraenoic acid, AM-404, hydroperoxyei-
cosatetraenoic acids [5-(S), 8-(S), 12-(S) and 15-(S)], hepoxilins 
A3, ATP, ammonia, polyamines (e.g. spermine, spermidine, putres-
cine), linoleic acid, in addition to 9, 13 and 20-hydroxyoctadecadi-
enoic acid.181 TRPV1 antagonists are classified into competitive or 
non-competitive antagonists according to their binding sites.181,182 
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Capsazepine is the first reported competitive TRPV1 antagonist 
that blocks capsaicin-or RTX-induced channel activation. Other 
examples include JYL-1421, A-425619, BCTC, JNJ-1720, SB-
705498, SB-366791, AMG-9810, MK2295 and AMG-2674.181,182 
Examples of non-competitive antagonists are ruthenium red, 
RRRRWW-NH2, methoctramine, AG-489, AG-505, DD-161515, 
and DD-191515.181 In another context, TRPV1 antagonists can be 
classified according to their effects on body temperature. In more 
detail, the antagonists can increase, decrease, or un-change body 
temperature. Some antagonists (e.g. AMG-0347 and AMG-517) 
can cause hyperthermia, which is a drawback, while hypothermia 
can be caused by other antagonists such as A-1165901. Mean-
while, one group of antagonists do not change body temperature 
(thermoneutral antagonists).182

Future directions
There is no doubt that the TRPV1 channel is an important ther-
apeutic target and that the pharmacological modulators of the 
TRPV1 channel can be potential drug targets for several disorders. 
The fact that there are drawbacks for several TRPV1 antagonists 
that are available in the market strengthens the need to discover 
novel TRPV1 modulators.181,182

TRPV1 modulation has been implicated in the anti-nociceptive 
effect of several medicinal plants, a finding that was proved by mo-
lecular docking studies.183–185 In accordance with this idea, Abbas, 
(2020) reviewed 137 natural ingredients that affect TRPV1 activ-
ity in different in vivo and in vitro assays.186 On the other hand, it 
has been long recognized that several toxins or venoms extracted 
from snakes, frogs, bees, spiders, scorpions, and marine organ-
isms can act as TRPV1 modulators.1,7,51 Continuing the search for 
novel compounds that can be exploited therapeutically and target 
the TRPV1 channel without adverse effects is of vital importance.

Conclusions
Since its cloning in 1997, research on the TRPV1 channel has 
grown rapidly. Several reports have documented the role of the 
TRPV1 channel in many biological and pathological conditions. 
Accordingly, attention has been directed towards the development 
of effective drugs that target the TRPV1 channel to treat different 
diseases. This review provides knowledge on the functions of the 
TRPV1 channel in health and diseases and highlights its impor-
tance as a target in pharmaceutical industries.
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